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With the tremendous growth in imaging applicaions and the development of filmless
radiology, the nead for compresson tedhniques which can adieve high compresson
ratios with user spedfied distortion rates become necessary. Boundaries and edges in the
tisaue structures are vital for detedion d lesions and tumors, which in turn requires the
preservation d edges in the image. Unlike existing lossy transform-based compresson
techniques such as FFT and DCT, edge preservationis addressed in this new compresson
scheme. The propased Edge Preserving Image Compressor (EPIC) combines losdess
compresson d edges with neural network compresson techniques based on Dynamic
Associative Neural Networks (DANN), to provide high compresson ratios with user
spedfied dstortion rates in an adaptive @wmpresson system well-suited to peralléel
implementations. Improvements to DANN-based training through the use of a variance
classfier for controlling a bank of neural networks gpeed convergence and all ow the use
of higher compresson ratios for “simple” patterns. The alaptation and generalizaion
cgpabiliti es inherent in EPIC aso fadlit ate progressve transmisson d images through
varying the number of quantizaion levels used to represent compressed patterns. EPIC
was able to achieve average compressonratios of 7.261 with an averaged Average Mean

Squared Error (AMSE) of 0.0147.
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Chapter 1. Introdu ction

Image compresson is a field that is growing exporentialy, due to its widespread
applicaions in dgital imaging and transmisson. With the evolution d digital storage of
visual information from grayscde still im ages to full-color red-time video images, ever
increasing bandwidths will be needed if very high compresson ratio red-time image
compresgon techniques were not available. Image wmpresson serves to aleviate this
problem by reducing the required bandwidths and allowing rew applications, such as
videoconferencing, to coexist with existing data and information transmisson on

computer networks.

With the development of filmlessradiology, where medicd images are digitized and kept
in eledronic achives for instant accessand dsplay on gaphicd computer displays, the
need for effedive data compresgon techniques bemmes even more important. Thisis due
to the volume of image data that is generated every day, as well as the neal to archive
images over extended periods of time. The storage requirements for a medium sized

hospital is expeded to reat afew Gigabytes per yea.

Nonetheless existing image mpresson techniques are dle to achieve @mmpresson
ratios from 2:1 to 201 for most applicaions. The higher compresson ratios have been
achieved using “losgy” techniques that remove visua informationthat is nat perceved by
the human eye. Higher compresson ratios can oy be atieved at the expense of higher
distortion that degrades the quality of the image. Thisis due to the general architedure of
existing compresors, which are designed to be general enoughto acoommodate avariety
of inpu charaderistics. This trade-off means that those compresors are unable to take
advantage of spedfic charaderistics of the inpus to achieve better compresson ratios

whil e maintaining the same or lower levels of distortion.



To med the dallenges of achieving even high compresson ratios, adaptive compresson
schemes have been developed. They are caable of adapting to the charaderistics of the
inpus as they vary. In this way, the image quality is preserved even thoughcompresson
ratios are much higher. It is the focus of thisthesisto determine the necessary architedure
for implementing a succesful compresson system that meds the objedives of high
compresgon ratios and low distortion rates by using an adaptive tednique to match the
compresson system to the charaderistics of the data. In addition, the suitability of such
systems for the ammpresson d medicd images will be aldressed as part of the reseach.
The amphasis in medicd applicdions is to preserve important image fedures that
contribute towards acarate diagnoses. Therefore, edge information and image textures

are important comporents that must be preserved by the image wmpresson system.

The requirements for different data compresson systems are tied inherently to the
spedfic needs of the given applicaion. For some gplicaions, such asthe mmpresson o
computer programs, no dstortion a changes in the data can be tolerated, and this requires
the use of losdesscompresson techniques. Idedly, al data compresson schemes oud
be losdess sincethis would circumvent problems related to determining what constitutes
nonreduncant information. However, Shannoris entropy relation indicaes that the
achievable compresgon ratio for general data is abou 2:1 using losdesstedniques. For
data sources such as gill im ages, audio, and \deo, these ratios are insufficient for coping
with the bandwidth and storage requirements of thousands of such images. A simple
uncompressed 256 x 256sized image with 8 kits per pixel requires 64Kb o storage,
whereas in applicaions such as High Definition Television and medicd image achiving
and transmisson, thousands of images need to be processd, stored o transmitted. High

compressonratios are therefore necessary for meding thase requirements.



From biologicd studes, it has been determined that our visual and auditory senses
perform some “masking’ of the recaved inpus, rendering a portion d the recaved inpu
reduncint and unpercavable. This enables us to devise lossy data @mpresson
techniques which remove this redundant information, thus adieving much higher
compresgon ratios. The rate distortion theory details the tradeoff between adhievable
compresson ratios and the resultant distortion incurred onthe data source[1]. Thisisthe
rationale behind modern image compresson techniques uch as the JPEG still image
compresson scheme, which provides compresson ratios of 5:1 to 201 with reasonable
distortions. Nonetheless most of these dgorithms do nd provide uses with much control
over the spedficaion d which comporents of the images are nonredundant, since the
asciated cost-functions are usualy global in nature and affed the entire image or
dataset. This presents a problem for applicaions sich as the mmpresson d magnetic
resonance images, since nat al image data is equally important for image interpretation

and analysis.

The daraderistics of an appropriate image cmpresson scheme can be defined as

follows:

(i) the adility to spedfy which comporents of the image ae vital for visua integrity
and contain the most information, and therefore, need to be preserved with very
littl e or noloss

(i) the adility to achieve a high compresson ratios as posdgble for the other portions of
theimage, leading to significant savings in transmisson and storage requirements.

(iii) the nedal to control the distortion incurred by the high compresson approac in (ii)
to within user spedfied levels.

(iv) the adility to adapt to changesin the inpu data stream.

(v) the &ility to perform the compresson and decompresson as fast as possble, for

usein red-time gplicdions.



For JPEG and aher transform-based compresson tedhniques, the ast-function is the
energy o frequency content of the image, which is concentrated in the lower values.
Compresson is achieved through the dimination d the higher energy o frequency
values, which are less concentrated and therefore deaned lessimportant. However, the
high energy o frequency comporents of theimage wrrespondto the edge information —
the use of transform-based coding techniques effedively results in the blurring o edges
and aher high-frequency contents of the image. Furthermore, at high compresson ratios
(which is controlled by the Q-Fador in JPEG), the distortion rate increases sgnificantly
aswell, resulting in “patchy” or “blocky” images. The JPEG agorithm has been devised
as a ommpromise for compressng a wide range of image types — as such, it does not
adapt to the dharaderistics of the inpu source in order to improve the tradeoff between
compresgon ratios and rate distortion. Red-time implementations of the Discrete Cosine

Transform (DCT) used in JPEG are dso costly, since DCT is computationally intensive.

Medicd image @mmpresson, such as the cmmpresson d magnetic resonance images,
requires the detedion and recgntion d boundxries in the tisaue structures, for detedion
of lesions and tumors. This requires the preservation d edges in the image, which defines
the various boundries between the various anatomicd structures and tiswues in the
image. In addition, the permisgble distortion rate is zero to very low values for medicd
image awmpresson die to its nature, resulting in a @nflict between requirements (ii) and
(iii), since distortion rate and achievable compresson ratios are diredly related (a high
compresson ratio implies a high dstortion rate). Adaptation (requirement (iv)) is an
offshoa of requirements (ii) and (iii), since ahigh compresgon ratio implies that the
system is very efficient in its ability to convert uncompressed inpu into compressed
output. Since atual data sources exhibit changes in their charaderistics over time,
adaptive mmpresson schemes are necessary for maintaining the high compresson ratios

and spedfied dstortion rates. Red-time mmpresson and deaompresson systems will be



required in the future, when interadive image reconstruction and 3 modelingis required

for asgstancein patient studies, educaion and reseach.

Severa of the requirements (ii)-(v) are well-suited for neural network based solutions.
Neura networks are alaptive in nature, due to their use of a training plese for leaning
the relationships between the input data and required ouputs, and their generdlizaion
cgpabiliti es provide ameans of coping with nasy or incomplete data; while new neural
networks presented in [2,3] provide a solution to the problem of achieving hgh

compresgonratios at very low distortion rates.

In order to achieve the goals of developing a suitable image compresson architedure for

magnetic resonanceimages, the following areas will be addressd in thisthesis:

i)  Thepreservation d edge information in the recvered image with no dstortion.

i)  Theuseof animage dassfier to separate image blocks into dfferent classes and to
compress the different classes of images using DANN-based networks that are
optimally trained for ead class

iii) The improvement in the training set generation criteria, to eliminate redundant
patterns and speel training.

iv) The extension d the DANN-based neural network training approach to improve the
spedad of convergenceduring training.

v)  The combination d the diff erent areas into a @mpresson system.

The following chapters outline the details for the Edge Preserving Image Compressor
(EPIC), beginning with a survey of existing compresson tedniques, the high level
spedficaion o the compresor architedure, the methods used to extend DANN-based
compresson for EPIC, the EPIC compresgon algorithm, and the results of using EPIC

for compressng magnetic resonanceimages.



Chapter 2. Survey of Previous Work

Image data compresson and decompresson can be dasdfied into two basic caegories,
losdess compresson and lossy compresson. Data compresson is aternatively termed
source mding for the cae of losdess compresson, since it entails finding the most
compad representation d the data source In general, losdess techniques are first
generation techniques which uilize dgorithmic goproaches to compressng data. Lossy
tedhniques usually adapt to the charaderistics of the human visual system for determining

what informationis visually important.

2.1. Conventional Data Compression Techniques

2.1.1. Lossless Techniques

Losdess coding is based on the work in Information Theory by Shannon. The major
caegories of losdess codes include: Huffman coding, Arithmetic coding, Run Length

Coding, and Markov source ®ding.

1) Huffman coding: To encode source data in the most compad form passble, variable
length codes based onthe probabiliti es of ead source symbal in a memoryless ®urce ae
used. Huffman coding is an optima way of generating such variable length codes [4].
However, Huffman coding assumes a static source model, in which the probabiliti es of
eat image mmporent remain constant. This limitation may adually result in source
expansion if the dharaderistics of the image to be excoded are vastly different from that

of the sourcemodel [5].

2) Arithmetic coding: Arithmetic coding, and its derivative technique, Q-coding, is used
to overcome some of the limitations of Huff man codes. It is a non-block code, in that a

single codeword is used to represent an entire sequence of inpu symbals, in contrast to



Huff man coding where asource symbal block corresponds to a cdeword block. Instead,
it uses the red numbers to represent a sequence of symbals by reaursively subdviding the
interval between 0 and 1 to spedfy ead successve symbol. The limitation d this
tedinique is the preasion required in performing the cdculations and arriving at the cde

word which will represent the entire sequence @rredly.

3) Run Length Coding: If we view the image & a sequence of bits, we can dften deted
long runs of zeros framed by ores, due to the presence of large uniform regions in most
images. Run Length Coding tries to exploit such inherent uniformity by using numbers to
court the runs of zeros. The disadvantage of Run Length Codingisthat it only dedswith

1D correlation within the image, andignares gatial (2D) correlation.

4) Markov source ®ding: In oder to ded with the dependencies often present in an
image where alarge number of pixels are highly correlated (termed Markov sources),
coding schemes sich as Lempe-Ziv-Welch (LZW) and its variants have been developed
which buld a dictionary of the inpu source sequences. Compresson cceurs by the fad
that successve occurrence of the same sequence will be represented by ponters to

existing dctionary entries.

These first generation techniques achieve an average cwmpressonratio of 2:1to 31. The
performance of such methods is insufficient for deding with the storage requirements of
future imaging systems, partly due to the fad that they are 1-D algorithms that treda the
data & being a bit stream and are unable to take advantage of spatial correlation o image
data in 2D or 3D. Schemes that take alvantage of such correlation include bit-plane
processng, pedictive cding and Huffman encoding o differential images [5,6].
However, the losdess attribute of such schemes is viewed as being advantageous in the

event that the raw data can be reconstructed for use without any change in the data.



2.1.2. Lossy Techniques

Losy tedhniques al invave the dimination d certain image comporents in order to
obtain amore dficiently coded representation d the image [7]. The mgjor division d the
different types of lossy compresson techniques are Pulse Code Moduation (PCM)
derived schemes, Transform Coding schemes, Block Truncaion schemes, Vedor
Quantization schemes, and Sub-band Coding schemes. In addition, herarchicd coding
schemes which utilize omporents from the various techniques have been proposed to
improve the cmmpresgon ratios or reducethe processng complexity of a given technique.

A goodsurvey of several of the dowve schemes can befoundin [8,9.

1) Pulse Code Moduation: The PCM derived schemes work by using a predictor function
in arder to determine the value of the aurrent pixel based uponthe values of previously
encoded pixels. The simplest predictor uses a 2 level quantizer and is termed Delta
Moddation. It has the disadvantage of not being able to represent quick changes in the
signal due to the limited step size of the quantizer. In order to handle larger variations in
the signal, Differential PCM (DPCM) can be used, with the predictor having more than
two levels. Thisis one of the more successul implementations of PCM schemes, in that
it can be modified to acourt for 2D spatial correlation in order to increase the data

compressgon ratio. Adaptive DPCM schemes have adieved compresson ratios of 3.5:1

[5].

2) Transform Coding: Among the various lossy schemes, the most popuar have been
those based onTransform Coding. These includes the Karhuren-Loeve transform (KLT),
Discrete Fourier transforms, Walsh—-Hadamard transforms and Discrete Cosine Transform
(DCT) (utili zed in the JPEG standard), which all attempt to reduce the image @rrelation

in order to represent it in as few basis functions as passble.



2a) KLT gives the minimum distortion for any gven image, bu it is never used in
pradice due to its computational complexity. For every image, an autocovariance matrix
has to be evaluated together with its eigenvalues and eigenvedors. However, the KLT

represents the upper boundfor comparing compresson efficiency of diff erent tedhniques.

2b) Fast Transforms. The following transforms are linea and can be decompaosed into
fast variants that have O(N logy N) complexity instead of the normal O(N2) asociated
with the original transforms. Fourier Quantizaion [10] is a transform technique which
has been investigated for digitizing hand images. In contrast, DCT is a fast but
subopimal transform which operates on a small sedion d the image & a time. This
invariably resultsin “blocking” effeds where subimages $how sharp transition artifads or
block-like gppeaance d the alges of eat subimage. In addition, transform techniques
involve alot of computationally intensive steps during compresson and cecompresson,
making software implementations cumbersome for red-time gplicaions. However,
dedicaed procesrs have started to appea for performing the transform manipulations
quickly. Variations of the DCT tedchnique that are documented in [11-13 attempt to
improve its performance and reduce the blocking artifads. One gproacd is to perform
the DCT onthe whoeimage a asingle frame [13]. This all eviates the blocking effed at
the epense of compresor complexity and memory requirements. Acceptable
compresson ratios of 4:1 for MR images to 201 for CR chest images were recrded.
Adaptive DCT (ADCT) has been investigated, which uses avariable encoding scheme for
the transformed image, all ocaing more bits to coefficients with higher values [14]. This

improves the ammpresgonratio by 2530%.

3) Vedor Quantizaion: Another approad utilizes Vedor Quantizaion techniques [5] for
the lossy compresson d MRI images [15]. Tedhniques based on Vedor Quantizaion

have asymmetricd processng requirements. Deaoding is grealy simplified due to the use
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of a Vedor Codebook which is used to rewmnstruct the image. However, the
computational overheal invalved in seleding ogimal vedors for encoding the images is
quite high, as well asthe doiceof the codebookitself. Variations of the tednique can be
used to provide for image earor corredion and dstortion control cgpabiliti es using

variable-sized image blocks [16] as well.

4) Subband Coding: Subband coding with DPCM quantization and past quantizaion
compresson [17] has been uilized for image compresson d norrmedicd images. It
utili zes the dharaderistics of the human visual perception system to filter out portions of
the image spedrum to which the eye isinsensitive. The technique has achieved very good

compresson ratios, with the JPEG standard test image adieving upto 0.23 lits/pixel.

5) QuadTree Based Tedniques [18,19: Other compresson tedchniques exploit the
structure of the images in arder to improve the compresson ratio. By sedioning the
image into regions which have similar charaderistics, the complexity of representing
eah region effedively is reduced. Examples of such tedchniques are QuadTree
representations and Region d Interest spedficaion in the image. QuadTree Based
techniques divide the picture reaursively into quadrants and achieve compresson by
encoding a uniform quadrant by an average pixel value. Details are preserved by
subdviding quedrants until the pixel values can be ewcoded using the average value
described previoudly. Thisis an approach which dces not require complex transformation

tedhniques.

6) Block Truncaion Based Tedhniques [5]: This technique, termed Block Truncaion
Coding (BTC), divides the image into small blocks, and then represents the block by the
average value and standard variation d the pixel values obtained through a moment
preserving function. In addition, a bitmap oltained by threshdding wing the average

value is then generated for the block. This effedively reduces pixel values to single bits,
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with the alditional overhead of storing the mean and variance of ead bock. More
recantly, there have been efforts to combine the alvantages of BTC, VQ and DCT in a

hybrid approad [20]. The ahieved compressonratio isabou 10:1.

2.1.3. Lossy With L ossless Residual Encoding Techniques

1) DPCM with Residual Image Coding [5]: Since the adility to reanstruct the original
image may be extremely important if advances in medica image processng enabled
better diagnasis using the raw data, the aility to perform loss/ encoding with residual
encoding d the erorswill be extremely important. This tedhnique basicdly compares the
raw image with the compressed image to oltain the residual (error) image. The residual
image is dored and can be used to rewnstruct the origina image with reduced storage

requirements. DPCM with residual image codingis such an example.

2) Progressve Transmisgon (Hierarchicd Interpdation) [5]: Anather strategy to reduce
transmisson and retrieval time for initial clinicd use is the hierarchicd approadh where
the original image and a series of compressed images with increasing compresson ratios
are stored in an image hierarchy. The image with the lowest acceptable compresson ratio
is transmitted first for reference, and the origina image is transmitted later for primary

diagnaosis. This approad trades off transmisson time for storage requirements.

2.2. Data Compression Using Neural Networks

Neura networks are highly paralel computational systems with simple computational
elements cdled neurons arranged in hierarchicd layers. Each neuron hes a set of inpus
with individual weights associated with ead inpu. The output of ead neuronis a non
linea resporse of the weighted sum of the inpus. Neura networks undergo “training” in
order to condtion the outputs to a desired resporse when presented with an inpu.

Training poceeals by measuring the eror present at the output between the adual and
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desired resporses. This error isthen used to adjust the weights associated with ead inpu,
and hence the network adapts until the outputs converge to the desired resporse for a
given inpu. After a sufficient amourt of training, the neural networks can then be used
for the compresson d images not used for training. The alaptability of the output
resporse to acommodate unknavn inpus is the key to the success of neural network
based tedniques. Compresson is adciieved by the means of multi-layered reural

networks that have small hidden layers (in comparison to the output layer) [21].

2.2.1. Neural Network Implementation of Vector Quantization

A recent work using reural network approacdies to image compressonis based onVedor
Quantizaion. Since the seledion d the gpropriate vedors for representing a given
image is basicdly a dassficaion problem, neural networks which have been trained to
do so opimally will grealy increase the compresson spead. Nevertheless reported
results gill i ndicate arather high dstortionrate, with asignal to nase ratio (SNR) of 26.9
for a 20:1 compresgon ratio [22]. Further improvements in the aror rates are necessary

before thistedhnique can be gplied to solve medicd image compresson poblems.

2.2.2. Cottrell/Munro/Zipser Technique

Most of the neural network based techniques are derived from the work by Cottrell,
Munro and Zipser [23]. They developed a multil ayered perceptron reural network with

bad propagation as the eror leaning function.

1) Badk-propagation with Multi-level Neural Nets: From [21], Multi-Level Neura Nets
are trained using badk-propagation with the block sampled ariginal image a the input and
output in order to oltain a reduced vedor representation d ead bock in the hidden
layer. The internal (hidden) representation d the block is the compressed form of the

Image to be transmitted sincethere ae lesshidden layer units than at the inpu or output.
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By applying the internal vedor to the deaompressng retwork, the original image can be
recdled. This approach uses a form of sef-organizaion for obtaining the reduced
dimension feaure space Thisis smilar to Principal Comporent Analysis in its mode of
operation. [24,29 are descriptions of systems which uilized this technique for data
compresson in nonmedicd environments. Neural networks are trained using a set of
sample images, and then the weights obtained through the training plese ae used to

compressadual images.

2) Non-quadratic Error Functions for Badk-propagation: It has been shown that bad-
propagation training wsing quedratic eror functions are shown to be euivalent to
performing KL transforms on the image [26]. Improvements in image restoration using
nonquadratic eror functions and deaeasing convergencetime by constraining the neura
network weights were propased as lutions to the inherent shortcoming d classc badk-
propagation hesed training [26]. The traditional measure of successin training reura
networks is based onthe mean square eror (MSE) observed at the output between the
training images and the output of the neural network. However, it is foundthat MSE is a
very urnreliable measure for determining the crredness of the weights used for
compresson, since the output error (from observing the decompressed images) can be
significant when the global error (as measured using MSE during the training phase) is
low [27]. Data compressonratios of 8:1 were adieved. The solution to this dilemmawas

to use anew training scheme cdl ed the gosilon descent technique.

3) Adaptive Hidden Layers: Other attempts to improve the cmmpresson results include
using reural networks that have avariable number of hidden units that adapt during the
training processin order to escgoe locd minima in the eror function. Proper seledion

and training d the neural networks is crucia for its siccess This architedure can adapt
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to dfferent inpu data dharaderistics throughits adaptive hidden layer which provides the

necessry leaning suppat to achieve mnwvergencein the training process

4) New neural network based adaptive @mpresson methods which owercome the
traditional drawbadks asociated with badk-propagation besed neural networks, such as
the static nature of network architedures, unkelanced errors of individual training
patterns, and keing trapped in locd minima during training, have been developed [2,3.
This new neura network architedure, termed Dynamic Autoassociative Neural Networks
(DANN) has been shown to provide excdlent control over the aror rates while

maintaining wser-seledable compresgonratios.



Chapter 3. Edge Preserving Image Compressor (EPIC) Architecture

The proposed Edge Preserving Image Compressor (EPIC) architedure is a new hyhbrid
image @mpresson technique cmbining conventional tedhniques with DANN-based
neural networks. EPIC utilizes tedhniques that are smilar to the gproach of the
edge/nonedge mmpresson algorithm propaosed in [28], which in turn is derived from the
synthetic-highs compresson technique. However, instead o the alaptive DCT
compresson wed for the nonedge image @ is dore in [28], neura network based
compressonis utili zed, and the edge-subtradion step is eliminated entirely. It is designed
to be moduar in nature, and improvements in eady modue can be incorporated easily
into the achitedure, resulting in better acarracy and performance of the system. One of
the major criteria of this architedure is the preservation d edge information d the
original image. Since alge detedion is a vital step in any image processng and
manipulation task, the inclusion d this gep into the image compresson architedure
results in two distinct advantages. the dimination o the neal for edge detedion in
subsequent downstrean processng d the images, and the guarantee that edge
information is not lost during compresson, unike many transform-based methods. The
edge information extradion is useful for other reasons as well. Correlation d anatomicd
fedures between images obtained using dfferent modalities are vital for various
diagnostic functions invalving tissue identificaion, classficaion, and metabadlic
modeling. For instance CT and MRI image fedures are used to locdize anatomicd
fedures obtained from PET and aher modaliti es with less distinct image feaures and

boundiries. Examples of such applicaions can befoundin [29-31].

Since alge information hes been preserved, we can compressthe rest of the image & high
compresson ratios with a user-controlled dstortion rate withou significantly affeding

the overall picture quality of the rewnstructed image. Nonetheless for certain
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applicaions sich as medicd imaging, very minimal or no loss compresson is required
where image integrity is of utmost importance The somewhat contradictory goals of high
compresgon ratios and low error rates therefore dictates the use of an adaptive
compresson technique which could satisfy thase two constraints. Neural network based
tedhniques, which have shown significant advantages over other tedniques in ther
adaptation and generali zation cgpabiliti es, have been seleded for this purpose. The neural
networks are trained to compressimage feaures present in spedfic types of images. By
targeting a spedfic data compresson damain for the neural network compressr, the
architedure ams to aciieve both oljedives throughthe dfedive use of adaptation and

generali zaion cgpabiliti esinherent in neural networks.

The seond ga@l of the compresson architedure is to creade asystem that is easly
converted to paralel implementations. Neural network systems are well suited to such
implementations due to their uniform structure and the distributed nature of the neural
computation, ouput, and weight adaptation processes. Hardware implementation o
neural network topdogies will | ead to the development of compresson systems that can
perform their tasks in red-time. The edge detedion step can be exeauted in parallel with
the neura network based image @mpresson pocess $nce the ealges are @ded
independently using chain-coding. This enables us to seled the most appropriate edge
detedion tedhnique for the given images, while improvements in edge detedion
algorithms and changes in image integrity criteria can be “plugged into” the compresson

system withou affeding the rest of the cmmpresson process

Ancther means of parallelizing the image compresson processis through the use of a
bank o neural networks for the compresson pocess The image is subdvided into
uniform sized blocks that are fed to a bank o neura networks. Each network has been

previously trained for a spedfic dassof image data based on the variance value of the
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image block. The gpropriate network is ®leded for the given image block, and
compresson d ead bock proceals independently of the other blocks. It is therefore
possble to ppeline and parall €lize this processfor the ammpresson d blocks belongng
to dfferent classes, adieving significant improvements in processng speed. The
advantage of using a bank o neural networks tallored to spedfic image dasses is the
cgpability for paralelism during the training process The antire training set is divided
over the bank of networks, and the number of patterns that ead network is required to
lean istherefore reduced, ar dternatively, the system is cgoable of leaning more images,

improving its adaptation cgpabiliti es.

Among the various edge detedors that have been developed, the Second Derivative
Exporential Filter (SDEF) [32] and the Canny filter [33] have proven to be very acarate
in terms of edge locdizaion. However, in empiricd use, the SDEF filter tends to enhance
noise dfeds, and anoise removal stage using a spedckle filter is necessary for eliminating
spurious and nasy edges. In contrast, the Canny filter, with its adjustable window size
and edge threshdlds, produces very clean edges withou the need for noise removal. EPIC
provides the option d seleding either Canny a SDEF edge detedion schemes during the
compresson plese. A clasdfier network examines ead block of the image ad
determines which of a bank o neura nets previously trained is best suited for the
compresson task using a simple variance dasdgfier. The aility of the neural network to
generdlize and be trained to adapt to spedfic types of patterns in the inpu image is
expeded to yield better compresson ratios and image fidelity as compared to
compresson wsing conventional DCT techniques, and is inherently more parall elizeble in
hardware implementations due to its uniform structure ad simple processng
requirements. The neura network architedure utilized in EPIC is a multi-layered
Perceptron retwork with two hidden layers, which has been used succesdully for image

data oompressonin [2,3]. The inpu vedor is compressed into a neural network pattern
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representation wsing a @wmpresson ratio dctated by the ratio between the number of
inpu neurons (equal to the number of pixels in the image block) and the number of
neurons in the seaond hdden layer. The compressed pettern outputs from the neurd
network compressor is then coded using either a variable bit-rate linea predictive cder,
or quantized using a fixed hit-rate with marginally higher distortion. Optional Lempel-
Ziv-Welch (LZW) encoding is applied to the outputs of bath the edge ading and reural
network compressors to remove ay residual redundancies. These patterns are then stored

or transmitted for use in reconstructing the images at the decompressor.

The decompresor performs the @rrespondng ogional LZW demding onthe receved
edges and compressed petterns, as well as correspondng linea predictive decoding on
the compressed petterns (if required), and passes it through a bank of neural networks
which conwverts the mmpressed patterns into recvered ouput blocks that are used to
form the non-edge image. This nonedge image is then owerlaid with the decoded edge

pixels to reanstruct the recnstructed image.

The compresson system can be shown in the foll owing dagrams (Figures 3.1and 3.2:
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Chapter 4. Extension of DANN Architecture & Training Algorithms for EPIC

Dynamic Asciative Neural Networks (DANN) have been used effedively for image
compresson [2,3]. Consequently EPIC utilizes DANN-based neural networks for
compressng the nonedge image. A brief summary of DANN charaderistics is provided
in the Appendix. However, DANN training suffers from the problem of sow
convergence, since the descending epsilon training technique [27] is avery slow process
There ae often spedfic inpu patterns that are wnsidered very difficult to lean. The
single network used for DANN compresson to compress al posdsble inpu patterns
therefore has to acount for those difficult patterns in its leaning processas well. This
further increases the required network capadty and complicaes the leaning process snce
the network often has to adapt to inpu patterns with very different charaderistics. All
these fadors limit the aility to extend DANN-based compresson techniques to provide
very high data cmpresson ratios while providing very low error rates for use with
applicaion where data fidelity is extremely important. EPIC improves upon DANN-
based compresson throughthe following feaures:

i)  Theuse of abank of DANN networks in paceof a single network for processng
the incoming data stream, uncer the @ntrol of avariance dassfier.

i)  Improvements in the training set generation procedure through the dimination o
dugicate training vedors which are dose together in Euclidean space controlled by
the use of asimilarity threshald.

iii) Improvements in the training process by spedfying termination criteria for
pathologicd training condtions, where the network error is increasing continually

or is guck for agiven number of training epochs.

The dhanges to DANN architedures and training algorithms are detail ed in the following

sedions.

20
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4.1. Variance Classifier Selector for Controlling a Bank of DANN Networks

A bank of four-layered feedforward perceptron retworks (similar to thase used in DANN
compresson) is used to processthe incoming cata strean. The data is clasgfied using a
simple variance dassfier into 1 d P classes, where P is determined heuristicdly from
variance daraderistics of the data, and compressed by the crrespondng retwork. In this
way, the ast of compressng complex patterns can be isolated from the st of
compressng the other patterns. The network used to compress a pattern with low
variance will require asmall first hidden layer and provide very high compresson ratios,
in contrast to ather networks which have larger first hidden layers, and passbly lower

compresgonratios. The outline of the training processisgivenin Figure 4.1.

Pattern Training Set Bank
> Formation for DANN of
4-layered

ran. feedforward
Imag DANNSs
under

I mage Block DANN supervised
Classification Selector training

Neural Network Image Compressor Training Outline
Figure 4.1: Compresson System Training Block Diagram

4.2. Thresholded Training Set Generation Procedure

The generation d the training set for training the bank of P neural networks is to take a
set of training images, and partition ead image into N x N sized bocks, overlapping by
N/2 pixels, for use in generating the training set. The variance of the block is cdculated
for use in the dasgficaion step. The blocks are dassfied into ore of P classs, based on
predefined variance thresholds determined empiricdly through statisticd analysis of the

charaderistics of typicd images, and converted into a training vedor. The candidate
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vedor belongng to the p-th classis then compared with al existing training vedors in
the training set for that classto determine if it exceeals a “simil arity threshold” defined to
eliminate redundant training vedors lying close together in Euclidean space The user
controll able “simil arity threshold” serves to reducethe size of the training set and avoids
overtraining through the use of highly similar training vedors, which reduces the

generdizaion properties of the networks. Thisisill ustrated in Figure 4.2.

For given set of trainingimages
Partitionimageinto N x N blocks, which are overlapping byN/2
For eat bock (paral eli zable)
classfy theblock into p P classesusing predefined variancethresholds
compare block with all existing petternsin the p-th training set
if the block exceals the simil arity threshold
add Hock to the p-th training set
endif
endfor
endfor

Figure 4.2: Training Set Generation Pseudocode

4.3. Modified DANN Training Procedure

The neura network training algorithm used in EPIC is based on the DANN training
procedure outlined in [2]. Each neural network in the bank of P networks is subjeded to
DANN training, with some modificaions designed to deted pathologicd condtions and
reduce time spent in unpoductive training. Among the improvements are conwvergence
detedion pimitives, which measure the slope of the earor curve to determine if the
training process is suck (wobkling) or if the aror function is increasing as training
procedals (increasing error). Thresholds are set for the number of iterations the network
can exist in these condtions before that particular phase of training is aborted and control

returned to the cdli ng routine.
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DANN training operates on two levels. the higher level is the generative process by
which the network grows and adjusts the number of hidden nodes nealed to lean the
required mapping between the inputs and the outputs. This controls the dynamic asped of
the network. The lower level is based on adpropagation training, in which the network
with a given hidden layer size undergoes modification d its weights to reduce the value
of the eror function and conwverge towards predefined error thresholds. Training is
controlled by two parameters, Eta (leaning rate), and Alpha (momentum). The eror
thresholds are user-seledable aad hence provide users with a known bouned error
charaderistic for the compresgon system. The badkpropagation training is further refined
throughthe use of the descending epsilon training approad [27], which forces the aror
curves for ead pattern to within a set interval as the training pogresses, resulting in a
more even distribution d errors throughou the entire training set. In addition, Eta and
Alpha ae scded to successvely smaller values at ead interval of descending epsilon
training to provide better convergence daraderistics. Validation d DANN training is
dore using a different set of patterns than thase used for descending epsilon training, to

provide an oljedive measurement of the training performance

The modified descending epsilontraining processis given in Figure 4.3.For ead training
pattern, it is propagated through the network and the outputs compared to the desired
outputs for computing the aror values for ead ouput noce. If the asolute aror isless
than the Epsilon parameter, it is st to zero, otherwise the aror is kept. If al output errors
are zero, that means the network has been trained corredly for that pattern and the
number of corred patterns is incremented. Otherwise, the @unt is reset to zero and the
adjusted errors badkpropagated through the network for weight adjustment. If all the
patterns in the training set passed the eror adjustment test (i.e.. number of corred
patterns is equal to the number of training petterns), then the egsilon parameter is

deaemented and the process repedaed urtil the final epsilon value is readed o the
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network fails to converge within a spedfied nunber of training epochs. If the eror
function is wobling a increasing, the esilon training plese is aborted and DANN

training resumes control.

Set Epsilonto Start Epsilon
While (not dore)
Get next pattern from training set
Propagate pattern through retwork
Adjust output errors using Epsilon parameter:
For ead neuronin ouput layer
If (| Output — Expeded Output | < Epsil on)
Error=0
endif
endfor
If al output neuronerrors=0
Increment Num. Corred Patterns
If (Num. Corred Patterns == Num. Patternsin training set)
If (Epsilon> Stop Epsilon)
deaement Epsilon byEpsil onStep
Scde Eta, Alpha by respedive ratios
Else
dore =1
endif
endif
Else
Badkpropagate arors
Adjust network weights
Reset Num. Corred Patterns
endif
Increment Pettern Courter
If (not dore) and (Pattern Courter == Num. Patternsin Training Set)
Increment Num. of Epochs
Validate Network, obtain avg. pattern error for network
Calculate slope of Error function
If (error functionis wobhing)
Increment Stuck court
If (Stuck count >= Max. Stuck court)
dore =1
endif
Else
Reset Stuck court
endif
If (error functionisincreasing)
Increment Error Increasing court
If (Error Increasing court >= Max. Error Increasing court)
dore =1
endif
Else
Reset Error Increasing court
endif
if (Max. Epochs readed)
dore =1
endif
endif
endwhile

Figure 4.3: Modified Descending Epsil on Training Pseudacode
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Modified DANN training is given in Figure 4.4. This higher level training pocedure
begins by first defining an initial first hidden layer size and the maximum first hidden
layer size which the network can reat before training is dedared ursuccesful. DANN
training is further divided into a Growing Phase, a Shrinking Phase, and a Fina (cleanup)
Phase. During the Growing Phase, the network is sibjeded to descending epsilon
training, and if the network fail s to converge to the spedfied target error, the first hidden
layer size is incremented by m neurons and descending epsilon training resumed.
Pathdogicd condtions such as a stuck error function a an increasing error function are
deteded and training aborted (dedared ursuccesdul) in such cases. This helps the
network designer by indicaing that either the given first hidden layer sizeis insufficient
for leaning the given training petterns, and therefore the initial first hidden layer size
needs to be increased, o that other parameters such as the leaning rate and momentum

neel to be aljusted.

If the Growing Phase @mpletes siccesdully, the network is then subjeded to a
Shrinking Phase to remove any reduncant hidden layer nodes, since the network becomes
overconstrained after undergoing the growth process The Shrinking Phase is closely
monitored by storing intermediate network states to ensure that the target error is gill met
if a margina first hidden layer node is removed. If the target error is not met, the last
network state which satisfies the aror constraints is recvered from temporary storage

and wsed in the Final Phase.

The Fina cleaaup is dore to enable the network to settle into its new topdogy and
paossbly improve its error performance beyond the targeted values. Badkpropagation
training (withou the use of descending epsilon training) is performed orce on the

network and this results in the succesgully trained network.
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The EPIC training processfor eat o the P networks can be dore in parallel, deaeasing
the time required for leaning a given set of images compared to the original DANN

training process

While (Network nat converged) and (number of training iterations not exceeded)
Growing Phase:
While (Num. first Hidden Layer neurons (NHid1) < Max NHid1)
and (Network nat converged) and (not incrdore)
Perform Descending Epsilontraining
Validate Network using Validation Set, obtain avg. pattern error for network
Calculate slope of Error function
If (error functionis wobbing)
Increment Stuck court
If (Stuck count >= Max. Stuck court)
incrdore =1
endif
Else
Reset Stuck court
endif
If (error functionisincreasing)
Increment Error Increasing court
If (Error Increasing court >= Max. Error Increasing court)
incrdore =1
endif
Else
Reset Error Increasing court
endif
If (not incrdore) and (NHid1 < Max NHid1) and (Network not converged)
Increment first hidden layer by m neurons
Reset Eta, Alpha
endif
endwhile
Shrinking Phase:
Store Network state
While (Network convergence citeriamet) and (NHid1 > 1)
Deaement first hidden layer by ore neuron
Reset Eta, Alpha
Perform Descending Epsilontraining
Validate network using Validation Set
(chedk avg. net error, network convergence aiteria)
if Validated, Store new Network state
endwhile
Final Phase (cleanup):
Restore |ast valid Network state
Perform Badkpropagation training
Store Network state
endwhile

Figure 4.4: Modified DANN Training Pseudacode



Chapter 5. EPIC Compression Algorithm

The EPIC compresson tedhnique is essentialy an asymmetric compresson scheme. The
processng owrheal is incurred at the compresson phese, due to the alge detedion and
block clasgficdion steps. The decompresson plese only requires the reconstruction o
the nonredge image and the overlaying d the elge pixels onto that image to result in the

reconstructed image.

An incoming image of sizen x nis passed through an edge detedor for extrading the
edge pixels for losdess chain coding while simultaneously being subdvided into N x N
nonoverlapping Hocks for processng by the neural network based lossy compressor.
The block is clasdfied into 1 d P classes. This process of decomposing the image into
individual blocks for use in classficaion can be performed in paralel. The dassfied
blocks are then fed to the bank of neural networks for compresson. Each network has
been trained previously using image blocks that have the same variance daraderistics
and is thus well adapted for those blocks. The second hdden layer compressed patterns
are then extraded, and either coded using a zeoth arder Linea Predictive Coder at a
variable bit rate, or aternatively, quantized at a fixed hit-rate with marginally higher
distortion. Associated with ead compressed pattern is the network class for use in
deampresson. The dain coded edge image, as well as the compressed patterns, are
optionally further compressed using the LZW-based UNIX compress command to
remove any further redundancies in the data stream. This usualy results in nomore than
10% improvement in the mmpresgonratio, hovever, and is obtained only from the chain
codes. It is concevable that this gep could be diminated with the use of a Huff man coder
for the dhain codes.
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Deompresson is relatively straightforward. The cmpressed nonedge pattern and edge
image ae first decompressed using the UNIX uncompress command as necessary, and
the compressed petterns extraded and fed to the decompressors based on their network
classfor decompresson into the respedive image blocks. The block decompresson step
can be performed in paralel. The various blocks are used to form the nonedge image. In
addition, the dhain coded edge image is deaded and owerlaid orto the non-edge image to

give the reconstructed image.

The dgorithms for compresson and deaompressonare givenin Figures5.1and 5.2.

For given set of images
Perform Edge Detedion onthe image
Store Edges and their Gray values using chain coding
Partitionimageinto N x N nonoverlapping docks
For eat bock (paral eli zable)
classfy theblock into p P classesusing predefined variancethresholds
compressthe block using the pth neural network
Quantize output of seaond hidden layer
endfor
Store ammpressed patterns using dfferential linea predictive mding,
or fixed-bit rate quantization for higher compresgonratio
Optional edge compresson stage using LZW encoding for storage/transmisson
endfor

Figure 5.1: EPIC Image Compresson Pseudocode

For given set of images
LZW deading (correspondto optional encoding) of edge cmmpressed images
Demde dhain of Edges andtheir Gray values
Perform differential linea predictive decding d compressed patterns (as needed)
For eat bock (paral eli zable)
decompressblock using the p-th neural network spedafied in pattern’s classinfo.
Form N x N non-edge image block
endfor
Overlay Edge pixels on noredge image to oltain reconstructed image
endfor

Figure 5.2: EPIC Image Decompresson Pseudaocode



Chapter 6. Quantitative Measures of EPIC Performance

6.1. Compression Ratio of the EPIC System

Since the image is demmpaosed into edge and nonredge portions, we can define
compresson ratios for the non-edge image only (NE-CR), the alge information oy (E-
CR), aswell asthe combined compresgonratio (CCR), defined as theratio o the size of

the original image to the combined sizes of the elge information and noredge image.

The mmbined compresgon ratio for an image (CCR), given a bank o neural networks

which can have diff erent compressonratios for ead network, is given by

_ Sizeo,ig
CCF#mage = Siz€ompr
: i
S|z%rig =n‘b

pixel

SIZ%ompr = Slz%dge + Slz%atterns
P

Siz%atterns = z Nh2i hﬁiK
=
where

n’: number of pixels in the imadeimensions rx n)
N: dimension of each image block

K: total number of blocks per imagé =ﬁ27

bpixel: size of pixel in bits

Sizeédge: size of edge pixel dafahain- coded graylevel edges
Siz%anems' size of compressed pattern data

Npz, : number of second layer hidden neurons in network i
b, : bits per compressed channel symbol for network i

P
k:.: number of blocks processed by networWlhereZlg =K
i:

If we let thi = th,bhzi =h,2, we get

P
Siz%atterns = Nh2 h12 Zki = Nh2bh2K
i=

which is the case where all networks have the same compressio
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However, since the weights interconneding the second hdden layer and the output layer
have to be stored o transmitted to the decompresr in order to reaver the image, the
compressonratio for the system will then have to incur the st of storing a transmitting

those weights once, for a series of m images compressed using those weights:

mx Sizgyig
CRSyStem_ MX SiZ@ompr +SiZ&yeights

P P
SIZF\"Neights: z l:{/\/eightl\loutl\lhz\ = bweightNout Nh2i
1=1 i=1

where
m: number of images compressed using the current weic
bweight: bits per weight value

Noui: Number of neurons in the output laylg ; = N;, = N2

Therefore
2
_ mn bpixel
CRsystem_ g P ] b
I’T'I%iz@dgeJ +bre Z Nh2‘ ki @"bﬂeigmNoutz Nmi
= i=1
where

Siz%dgej: size of edge image for imagéof m)

Note that these values do nd include the dight overhead incurred by the use of

descriptive fil e headers.
6.2. Image Quality Error Measures

The eror measures used in the discusson d the results are the Mean Squared Error
(MSE) and the Pe& Signal to Noise Ratio (PSNR), two common qualitative measures

used for comparing acaracy of compresson systems|[1]. They are defined as:
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X - original pixel value afi, j)
x; : reconstructed pixel value @tj)
maxgraylevel maximum possible graylevel value for the im



Chapter 7. Design of Experiments and EPIC Compression Results

7.1. Experimental Procedure

A set of MR images, comprising d a series of 24 images, were used for the training and
compresson tests. The images were numbered from 00 to 23, categorized rougHy into
head images (mri00 to mrill), and chest images (mril2 to mri23). The Canny edge
detedor was used for all the cmpresson experiments as it was found empiricdly to

provide much better defined and cleaner edges than the SDEF filter.

Thetraining and vali dation images were partitioned into 16 x 16 bocks, overlapping by 8
pixels horizontally and verticdly, for creding the training and validation petterns. The
similarity threshold was st equal to 50.0, dfined as the squared Euclidean dstance
between the candidate vedor and existing wvedors in the training set. This helped
eliminate alot of smilar vedors which constitute nonrimage aeas in the MRI (sincethe
adual image aeais a drcle inscribed within the square image frame). Each bank of
DANN networks contained eight networks, which were seleded via the variance
classfier network seledor using heuristics based on \ariance thresholds defined through
previous datisticd analysis of the MRI training set. The variance of a block was
cdculated with resped to the values of pixels within the block. Each block is classfied
based on three variance thresholds, the first defined for the entire block, the second
defined based on quarter blocks, and the third defined based on sixteenth-blocks. The
thresholds were set equal to 10.0, 90.0,and 300.0,and were utilized by the variance
classfier to selead one of the eght DANN networks for subsequent training and
compresgon. The DANN networks were numbered 0 to 7 for the various variance
classes, with Network O correspondng to Class1, and Network 7 correspondng to Class

4. The heuristic given in Table 7.1 was used to perform the variance dassficdion:
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Variance Class | Ntwk
Entire block variance <10.0 1 0
Block variance >10.0, 2 1
al 1/4-block variances < 90.0
Block variance >10.0, 29 2
one 1/4-block variance >90.0
Block variance >10.0, 2h 3
two 1/4-block variances > 90.0
Threeor four 1/4-block variances > 90.0, 3 4
al 1/16-block variances < 300.0
Threeor four 1/4-block variances > 90.0, 3q 5
oneto four 1/16-block variances > 300.0
Threeor four 1/4-block variances > 90.0, 3h 6
fiveto eight 1/16-block variances > 300.0
Threeor four 1/4-block variances > 90.0, 4 7
more than eight 1/16-block variances > 300.0

Table 7.1: Variance Classfier Neura Network Seledor Heuristic

The mmpresson ratios of eat network, defined as the ratio of the number of neuronsin
the input/output layers to the number of neurons in the second hdden layer, were dso
defined based onthe variance dass Higher compresson ratios were used for variance
classes 1 and 2,while lower compresson ratios were used for variance dasses 3 and 4to

handl e the more complex image blocks.

For Experiment (Expt.) CTEST4, the training set was generated from the first ten images
(mri00 to mri09), while ten images (mril0 to mril9) were used as the validation set
during training. Remaining images (mri20 to mri23) were used as additional test images.
The values of eta and apha used duing training were chosen to be small, in the range of
0.1 (eta) to 0.2 (alpha), after it was determined throughtraining trials that larger values
cause the network error to deaeese rapidly at the beginning bu do nd converge
sufficiently during later phases of the training process The values of eta and apha were
also set to decyy as descending epsilon progressed to enable the network to follow the
badkpropagation gadient descent more predsely. Epsilon_start was st to 0.50001at the
start of the descending epsilon training process and deaeased to 0.00001(epsilon_end)
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in stepsizes of 0.05(epsilon_step). The target Average Mean Squared Error (AMSE) was
set to 0.01,with the maximum number of epochs for descending epsilon training set to
500, with validation performed every 20 epochs. The descending epsilon training rocess
was aborted if the network error was duck for 10 validation cycles, or 15 cycles with
continually increasing errors. Validation for DANN training was performed every time a
descending epsilon training cycle was completed. If the target AMSE was nat readed,
DANN training would change the first hidden layer size until the maximum size was
readed, a if the network error was guck for 10 validation cycles or 10 cycles with

continually increasing errors.

It was observed that for network classes with lower variances, the training parameters had
to be aljusted for slower convergence, sincethe low variability training vedors resultsin
very low average network errors. The training parameters for Networks O to 2 were
chosen as — eta 0.1, dpha: 0.1, Epsilon_start: 0.0000101,Epsilon_end: 0.0000001,
Epsilon_step: 0.000005.1n addition, duing the later stages of training for the remaining
networks, the gsilon parameter had to be reduced to much lower starting values to
enable the network to converge towards the adua errors. Otherwise, the images becane
too “smoothed” and cetails were lost. Nonetheless na al networks were ale to
converge to the target error rates, espedally for the higher variance dasses. However, the
convergence property for Network O (Class 1) was found to be superior, and that
charaderistic was exploited in increasing its compresson ratio to 2564 (64:1) to provide
a higher overall compresson ratio. The results for the modified Network O architedure
are cdegorized uncer Expt. CTEST4_A. The trained EPIC neural-network topdogies for
Expt. CTEST4 and CTEST4_A are given in Tables 7.2 and 7.3.The number of neurons
in the inpu and ouput layers are equal to 256 lecaise images were subdvided into non

overlapping 16 x 16 bocks for compresson.
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CTEST4
Ntwk | Inpu | First | Second| Output
Hidden | Hidden
256 100 8 256
256 70 8 256

256 250 8 256
256 231 8 256
256 213 16 256
256 211 16 256
256 218 16 256
256 186 16 256

Table 7.2: EPIC neural-network topdogy for Expt. CTEST4

N[OOI~ WNEFO

CTEST4 A
Ntwk | Inpu | First | Second| Output
Hidden | Hidden
256 90 4 256
256 70 8 256

256 250 8 256
256 231 8 256
256 213 16 256
256 211 16 256
256 218 16 256
256 186 16 256

Table 7.3: EPIC neural-network topdogy for Expt. CTEST4_A

~N OO~ WNEFLO

7.2. Compression Results

For experiment CTEST4 and CTEST4_A, the compressd ouputs were quantized to 8
bits resolution for storage. In the cae of MR images, the chain-coded edge information
constitutes a much larger propation d the combined compressed image size (which
includes both edge and nonedge data). This constrains the upper boundfor achievable
Combined Compresson Ratios (CCR) to the mmpresson ratio for the edges (E-CR). In
Expt. CTEST4, the average compresgon ratio achieved for the non-edge image (NE-CR)
was 20.91, while the arerage compresgon ratio for the edge pixels (E-CR) was 10.421.
The average Combined Compresson Ratio (CCR) was 6.951. The average AM SE of the
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combined image (edge and nonedge) was 0.0147,which is equivalent to a PINR of
71.02 @B. It coud be seen that edge preservation improved the fidelity of the

reconstructed image over that of the non-edge image only.

In contrast, for Expt. CTEST4_A, The NE-CR for Expt. CTEST4_A was higher due to
the use of higher compresson ratios for Network 0, leading to an improvement in the
CCRto 7.261, while the higher compresgon ratio dd nad increase the overall AMSE
from that aciieved in Expt. CTEST4. The results for the set of 24 MR images
compressed using EPIC are presented in Table 7.4and Table 7.5.

EPIC Compression Expt. CTEST4
Image | #QBits NE- NE- E+NE- | E*NE- | NE-CR | E-CR CCR
PINR | AMSE | PSNR | AMSE

mri8I00 8 7046 | 00269 | 7264 | 00217 | 21021 | 9861 | 6711
mri8l01 8 7046 | 00181 | 7249 | 00148 | 20861 | 9391 | 6471
mri8102 8 7149 | 00142 | 7334 | 00118 | 21401 | 10731 | 7.151
mri8I03 8 7033 | 00144 | 7199 | 00122 | 21021 | 10491 | 7.00:1
mri8104 8 7127 | 00129 | 7304 | 00108 | 21131 | 12081 | 7.691
mri8I05 8 7089 | 00127 | 7266 | 00107 | 21021 | 11421 | 7.40C1
mri8l06 8 7012 | 00169 | 7200 | 00140 | 21631 | 11431 | 7481
mri8I07 8 6849 | 00200 | 7053 | 00163 | 21241 | 112¢1 | 7.331
mri8108 8 6647 | 00269 | 6846 | 00221 | 21861 | 10511 | 7.10C1
mri8109 8 6822 | 00193 | 7015 | 00159 | 21631 | 10851 | 7.231
mri8I10 8 6864 | 00154 | 7047 | 00128 | 21351 | 11161 | 7.331
mrig8i11 8 6994 | 00119 | 7168 | 00100 | 21241 | 10841 | 7.181
mrig8l12 8 6853 | 00122 | 7038 | 00101 | 203911 | 10321 | 6.851
mri8l13 8 6850 | 00120 | 7097 | 00094 | 1990:1 | 10381 | 6.821
mri8l14 8 6786 | 00144 | 7056 | 00110 | 20191 | 9541 | 6481
mri8l15 8 6857 | 00152 | 7148 | 00114 | 20091 | 9441 | 6421
mri8l16 8 6782 | 00159 | 7085 | 00118 | 1980:1 | 8951 | 6171
mri8l17 8 6866 | 00166 | 7174 | 00122 | 1990:1 | 9181 | 6.281
mri8l18 8 6707 | 00194 | 6972 | 00149 | 19701 | 9121 | 6231
mri8l19 8 6708 | 00211 | 6967 | 00163 | 19701 | 8821 | 6.091
mri8120 8 6710 | 00235 | 6943 | 00186 | 19851 | 9721 | 6521
mri8i21 8 6820 | 00240 | 7049 | 00191 | 21291 | 11821 | 7.6G:1
mri8l22 8 6783 | 00262 | 6990 | 00213 | 2222:1 | 11481 | 7571
mri8l23 8 6769 | 00294 | 6982 | 00237 | 23091 | 11411 | 7.631

Avg. 68.82 | 0.0183 | 71.02 | 0.0147 | 20.90:1 | 10.42:1 | 6.95:1

#QBits: Number of Quantizaion Bits for compressed patterns,
NE: Non-Edge, E+NE: Edge + Non-Edge (combined), PSNR: Pegk Signal to Noise Ratio,
AMSE: Average Mean Squared Error, NE-CR: Non-Edge Compresson Ratio (C.R.),
E-CR: Edge C.R., CCR Combined (Edge+NonEdge images) C.R.

Table 7.4: Results of image cmpresson wsing EPIC for Expt. CTEST4
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EPIC Compression Expt. CTEST4 A
Image | #QBits NE- NE- E+NE- | E*NE- | NE-CR | E-CR CCR
PINR | AMSE | PSNR | AMSE

mri8I00 8 7046 | 00269 | 7264 | 00217 | 2387:1 | 9861 | 6981
mri8l01 8 7046 | 00181 | 7249 | 00148 | 23631 | 9391 | 6721
mri8102 8 7149 | 00142 | 7335 | 00118 | 2451:1 | 10731 | 7461
mri8I03 8 7033 | 00144 | 7199 | 00122 | 2401:1 | 10491 | 7.301
mri8104 8 7127 | 00129 | 7304 | 00109 | 24251 | 12081 | 8061
mri8I05 8 7089 | 00127 | 7266 | 00107 | 24331 | 11421 | 7.771
mri8l06 8 7012 | 00169 | 7201 | 00140 | 25541 | 11431 | 7.891
mri8I07 8 6850 | 00200 | 7054 | 00163 | 25421 | 112C1 | 7.771
mri8108 8 6648 | 00269 | 6847 | 00221 | 26621 | 10511 | 7541
mri8109 8 6823 | 00193 | 7016 | 00159 | 26151 | 10851 | 7.67:1
mri8I10 8 6865 | 00154 | 7048 | 00128 | 25621 | 11161 | 7.771
mrig8i11 8 6995 | 00119 | 7169 | 00100 | 2507:1 | 10841 | 7571
mrig8l12 8 6853 | 00122 | 7038 | 00101 | 23631 | 10321 | 7.181
mri8l13 8 6851 | 00120 | 7098 | 00094 | 22831 | 10381 | 7.141
mri8l14 8 6787 | 00144 | 7058 | 00110 | 22931 | 9541 | 6.741
mri8l15 8 6858 | 00152 | 7149 | 00114 | 22581 | 9441 | 6.661
mri8l16 8 6782 | 00159 | 7085 | 00118 | 22131 | 8951 | 6371
mri8l17 8 6866 | 00166 | 7174 | 00122 | 22281 | 9181 | 6501
mri8l18 8 6707 | 00194 | 6972 | 00149 | 21891 | 9121 | 6441
mri8l19 8 6708 | 00211 | 6968 | 00163 | 21771 | 8821 | 6271
mri8120 8 6711 | 00234 | 6944 | 00186 | 21831 | 9721 | 6721
mri8i21 8 6820 | 00240 | 7049 | 00191 | 23521 | 11821 | 7.87:1
mri8l22 8 6784 | 00262 | 6990 | 00213 | 2462:1 | 11481 | 7.831
mri8l23 8 6770 | 00293 | 6984 | 00237 | 2611:1 | 11411 | 7.941

Avg. 68.83 | 0.0183 | 71.02 | 0.0147 | 23.96:1 | 10.42:1 | 7.26:1

#QBits: Number of Quantizaion Bits for compressed patterns,
NE: Non-Edge, E+NE: Edge + Non-Edge (combined), PSNR: Pegk Signal to Noise Ratio,
AMSE: Average Mean Squared Error, NE-CR: Non-Edge Compresson Ratio (C.R.),
E-CR: Edge C.R., CCR Combined (Edge+NonEdge images) C.R.

Table 7.5: Results of image compresson wsing EPIC for Expt. CTEST4_A

The same set of images were compressed using JPEG at compresgon ratios that were
comparable to that achieved using EPIC. An image quality fador (QFador) of 25 wsing
JPEG provided a mmparable arerage Compresson Ratio to Expt. CTEST4 o 20.611,
with an average AMSE of 0.0062,while aQFador of 17 provided comparable average
Compresson Ratios to Expt. CTEST4_A. It was observed that as the compresgon ratios
were increased (through lowering QFador), the average AMSE aso incressed qute
rapidly. This contrasts with the performance of EPIC, where the AMSE held constant as
the compresson ratio was increased. The results for JPEG for the cae of QFador = 25

and QFador = 17 are presented in Table 7.6



JPEG Compression Results ( comparable compression ratios)

Image | QFador PINR AMSE CR QFador PINR AMSE CR
mri8I00 25 7869 00118 | 20211 17 7556 00162 2440:1
mri8l01 25 7883 00078 1956:1 17 7557 00109 | 23681
mri8102 25 8000 00061 1995:1 17 7664 00085 | 23981
mri8I03 25 7968 00056 1963:1 17 7637 00078 | 23461
mri8104 25 7981 00055 1989:1 17 7664 00076 | 23711
mri8I05 25 7981 00052 2020:1 17 7653 00072 24281
mri8l06 25 7972 00065 | 20911 17 7636 00091 | 2506:1
mri8I07 25 7923 00068 | 20731 17 7603 00094 | 24731
mri8108 25 7862 00080 | 20731 17 7543 00110 | 24421
mri8109 25 7875 00067 2094:1 17 7563 00092 2490:1
mri8I10 25 7952 00052 21011 17 7637 00071 | 25151
mrig8i11 25 8012 00043 | 21281 17 7690 00059 | 25441
mrig8l12 25 7931 00041 | 20161 17 7612 00057 2430:1
mri8l13 25 7850 00044 19731 17 7532 00061 | 24171
mri8l14 25 7833 00051 1990:1 17 7521 00069 | 24431
mri8l15 25 7876 00055 | 20771 17 7579 00074 | 25361
mri8l16 25 7834 00056 | 20181 17 7539 00075 | 24551
mri8l17 25 7907 00059 | 20551 17 7599 00080 | 2516:1
mri8l18 25 7880 00060 19781 17 7576 00082 2411:1
mri8l19 25 7947 00061 | 20431 17 7644 00083 | 2480:1
mri8120 25 7988 00065 | 20211 17 7673 00090 | 24531
mri8i21 25 8094 00067 21751 17 7774 00092 2640:1
mri8l22 25 8114 00069 | 22411 17 7798 00095 | 27711
mri8l23 25 8200 00070 | 23771 17 7873 00097 2846:1

Avg. 79.47 0.0062 | 20.61:1 76.30 0.0086 | 24.88:1

QFador: JPEG Quality Fador, PSNR: Pe&k Signal to Noise Ratio,
AMSE: Average Mean Squared Error, CR: Compressgon Ratio

Table 7.6: Results of image acmpresson wsing JPEG with QFador = 25and 17
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However, for error rates that were comparable to that adiieved by EPIC, which

corresponced to an average aompressonratio of 32.151 and an average AMSE of 0.0132

using a QFador of 10, the recvered JPEG images were much more distorted and

“blocky”, and some feaures could na be distingushed. In contrast, recovered EPIC

images indicated much better subjedive image quality. The JPEG results for QFador =

10arepresented in Table 7.7
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JPEG Compression Results (comparableerror rates)

Image QFador PINR AMSE CR
mri8l00 10 7146 00244 32081
mri8l0l 10 7129 00167 30551
mri8l02 10 7229 00131 30931
mri8l03 10 7199 00122 30831
mri8l04 10 7219 00118 30831
mri8l05 10 7222 00112 3100:1
mri8l06 10 7200 00140 3180:1
mri8l07 10 7149 00148 3094:1
mri8l08 10 7091 00173 3062:1
mri8l09 10 7110 00145 3166:1
mri8l10 10 7170 00113 32271
mri8i1l 10 7263 00091 32751
mri8l12 10 7174 00088 31611
mri8l13 10 7110 00093 31741
mri8l 14 10 7106 00105 3180:1
mri8l15 10 7170 00112 32931
mri8l16 10 7121 00114 3209:1
mri8l17 10 7180 00122 33151
mri8l18 10 7155 00124 31891
mri8l19 10 7193 00130 3290:1
mri8l20 10 7207 00143 32081
mri8l21 10 7330 00144 3401:1
mri8l22 10 7353 00148 34771
mri8l23 10 7406 00155 36311

Avg. 71.93 0.0132 | 32151

QFador: JPEG Quality Fador, PSNR: Pe&k Signal to Noise Ratio,
AMSE: Average Mean Squared Error, CR: Compressgon Ratio

Table 7.7: Results of image compresson wsing JPEG with QFador = 10

7.3. Discussion of Results

Althoughthe quantitative results from JPEG had better AMSE values at QFador = 10,
the subjedive image quality of the recovered JPEG image was much worse than those
obtained from EPIC which had comparable AMSE values. This was due to the fad that
the neural network compressor distributed the erors much more evenly throughou the
entire image. In addition, since JPEG is an agorithmic image compresson scheme, there
isnoway to prevent the rapid deteriorationin the quality of JPEG images at compresson
rates abowve 20:1, making JPEG impradicd for applicaions requiring very high
compresson ratios. However, EPIC would be &le to provide ameans of adhieving such
high compresgon ratios with little or no deterioration in the subjedive image quality

throughsufficiently trained networks.
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The DANN neura network training scheme has very slow conwvergence properties.
Consequently, the results detail ed in the previous ®dionsrefled the fad that some of the
networks have not converged sufficiently to the desired error rates. Although the
improvements proposed for EPIC helped circumvent some of its most obwvious
wegknesses, more work still remains to be dore to improve the training and convergence
charaderistics. Some improvements suggested in [3] might help improve the mnwvergence
properties of the EPIC neura network compressors, thus enabling EPIC to adieve better
error rates compared to JPEG while adieving much higher compresgon ratios. Another
means of adhieving ketter error rates is throughthe removal of edges from the image to
be compresed by the EPIC neural network compresors. This edge-removed image
would have lessvariability compared to the original image, thus making it easier for the
neural network to process and compress the image, since neura network-based
compressgon tedhniques tend to have low-pass properties and smooth ou edge

information.

Furthermore, the edge detedion and preservation step incurs a rather substantial penalty
in terms of the overal adievable compresson ratios. Nonetheless it is an important
comporent of the compresson scheme for meding the aiteria of a suitable compresson
system for MR images, as well as improve the overall image quality. As dated
previously, edge information is also vital for 3D volume visudizaion and multiple

modality image registration appli cations.

Examples of the remvered images for EPIC (Expt. CTEST4_A) and JPEG (QFador =

10) aregiven below, in Figures 7.1to 7.3
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Figure 7.1: (Ieft) Original, (middle) EPIC Expt. CTEST4_A, and (right) JPEG (Q=10)
Reoovered Images for MRI8I02

Not Available in Softcopy Format

Figure 7.2: (Ieft) Original, (middle) EPIC Expt. CTEST4_A, and (right) JPEG (Q=10)
Reovered Images for MRI8I11

Not Available in Softcopy Format

Figure 7.3: (left) Original, (middle) EPIC Expt. CTEST4_A, and (right) JPEG (Q=10)
Reoovered Images for MRI8I17
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Chapter 8. Summary

8.1. Advantages of the EPIC Compression Scheme

(i)

(i)

(iii)

(iv)

(v)

Edge preservation: Sincethe alges in the image ae aded using alosdess £heme,
it does nat suffer from the drawbadk of conventional JPEG, which tends to lose
high frequency comporents (edges) during compresson.

Feaure determination: A magjor advantage of the edge extradion step is that it
provides the first step towards the extradion d feaures from the image for use in
further image processng. This utili zaion d an essentia step in image processngin
the compresson processhelps elimi nate redunchnt processng later on.

High compresdgon ratio for nonedge images. the separation d edge information
from the rest of the image dfords the use of lossy compresson schemes that
adhieve high compresson ratios. In addition, the use of neural networks for
performing this gep enables us to tailor the compresson architedure for spedfic
types of images.

Progresgve Transmisson: Since neural network compresors are &le to generalize
and compensate for noisy inpus, it is therefore possble to provide progressve
transmisson d images by transmitting the most significant bits of the mmpressed
vedors first. This is effedively similar to performing quantizaion on the
transmitted vedors, where the receved compressed vedor is improved successvely
using more significant bits, increasing the number of quantization levels and
converging to the final image.

Tempora adaptability: Neural network based compressors are by definition
adaptive. In addition, they can be @nfigured to adapt to changes over time in the
inpu data stream by the use of shadow neura network compressors which continue

to lean from patterns extraded from the input stream. If the aror rates of the on-
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line network exceel a given threshold, the shadow compresors can replace the

existing retwork easily, thus achieving temporal adaptability.

8.2. Future Enhancements

Further improvements to the DANN training algorithms are still needed, to improve its
speed o convergence and conwvergence dility beyond that achieved through the
techniques proposed in EPIC. Thisis necessary due to the nonlinea nature of the neural
network training process as well as the high degrees of freedom present in parameter
seledion. Edge removal prior to neural network compresson would also help reduce the

variability in the image and help convergence

In order for the cmpresson architedure to perform optimally, continuous monitoring o
the compresson pocess $loudd be maintained. This is acomplished by using a similar
bank of neural compressors in paralel with the ad¢ual compresor (caled the shadow
compressor), and if the eror exceals a predefined threshald, the shadow compressor
network will be retrained in arder to return the system to its operational goals. Once the
training is completed, the updated weights of the neural networks will be transferred to

the operational compressor network.

Variable sized image blocks can also be used to reduce “blocking’ effeds, while large
image blocks can be used to provide even higher compresson ratios for the uniform dark

regions surroundngthe MR images.



Appendix
A.1l. Dynamic Autoassociative Neural Networks — Architecture & Training

The dasdc multil ayer feaed forward network architedure for data cmpresson proposed
by Cottrel, Munro, and Zipser [23] comprises of a threelayer network, with N neurons
ead in the inpu and ouput layers forming an autoassociative mapping, and M neurons
in the hidden layer (M < N) to represent the mmpressed version d the data. The output
values from the hidden layer neurons are used to reanstruct the data set. It has been
shown by Baum [34] and Widrow [35] that the cgadty or leaning ability of anetwork is
dependent on the number of weight conredions. With a three layer network, a fixed
compresgon ratio dctates the cgadty of the network for storing and reconstructing
different input patterns, and viceversa. This sverely limits the usefulness of neural
network based data cmpresson systems. In order to achieve very high compresson
ratios while alapting to dfferent data dharaderistics, four layer feedforward neura
networks are therefore used to provide the necessary leaning capadty and adaptability.
In order to corredly lean complex datasets, the number of neurons in the first hidden
layer is variable and can be tailored to the wmplexity of the data, whereas the second

hidden layer provides the desired compressonratio. Thisisill ustrated in Figure A. 1.
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I nput Hidden Hidden Output
Layer Layer 1 Layer 2 Layer
(Dynamic  (Compressed
Learning Pattern
Support Layer)
Layer)

Dynamic Autoassociative Neural Network (DANN) Architecture

Figure A.1: DANN Architedure

However, the use of four layer networks pose other problems. It was reported in [36] that
athoughthree ad four layer networks with similar number of weights give statisticaly
identica results (i.e., they are equivaent), four layer networks with ureven numbers of
weights in the two hidden layers (unbelanced networks) are difficult to train and dten
result in the aror function being trapped in a locd minima. In addition, the neal to
corredly lean datasets of arbitrary complexity results in costly architedural modificaion
and retraining ona tria and error basis using conventional staticdly defined network
architedures. In order to addressthe difficulty of leaning for unbalanced networks, the
descending epsilon technique proposed by Yu and Simmons [27] is used duing training.
The aror present at eadr ouput neuron oldained duing training is compared to a
threshold epsion (€), and if it is lessthan €, the eror is ignared. Otherwise, that error is
badpropagated as usua to the hidden layer neurons. Once dl the training petterns passa
given ¢, it is lowered and training continues until a final €is readed. A very similar

approad to descending epsilon hes been used succesdully for reduced predasion reura
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networks in [37], where it is cdled the Weghted Error Function. The use of the
descending epsilon technique dso constrains the arorsinto a more well defined range, so
that individual pattern errors are well constrained, in addition to the average aror for the

network acossall patterns.

To provide for adaptation to arbitrary datasets during training, and to avoid the expense
of a trial and error approadh to retwork architedure determination, dyramic neura
network architedures have been proposed [38], and more recently [39], used dyramic
network architedures to allow the system to escgpe locd minima and provide necessary
leaning suppat. [39] further indicates that better convergence properties are observed
when nocdes are alded to the first hidden layer compared to the seaond hdden layer. This
isdueto the fad that the seaond hdden layer adsas a “filter” to bufer the dhangesin the
network architedure due to the aldition d new neurons. Since the requirements of the
data coompresson problem dictate that network modificaions can occur only in the first
hidden layer, the results presented in [39] further validate this approach. These techniques
have been used to crede the DANN compresson system [2]. It combines the dynamic
architedure gproach with the use of the descending epsilon technique during training to

achieve low errors with high compresson ratios.

During the training plese for the neural networks, training images are first segmented
into smaller subimages and converted into training petterns. Training sets are tail ored to
the spedfic type of images and image modality in arder to achieve optima performance
for a given modality. The Mean Squared Error (MSE) of the neural networks output is
used to quantify the performance of the training process However, it must be noted that
MSE alone is nat sufficient for determining whether the network is converging to the
desired visual output. A subjedive aiteria based on the visual fidelity of the image is

desirablein order to provide amore balanced approach to training the neural networks.
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A.2. Backpropagation Formulae

The formulae used for the four-layered feedforward perceptron retwork, as adapted from

the formulaegiven in [40] are:

Inpu layer, given p-th inpu vedor, layer sizeN:

\
Xp = (xpl Xp2seeen xpN)

First hidden layer inpu for j-th neuronwith bias unit, layer size N;:

N
1_ hl hL
net; = iji Xpi + 0]
=

First hidden layer output for j-th neuron:

= 17 et)

Seoond hdden layer inpu for k-th neuronwith bias unit, layer size N2:

h2; . gh?
neth? = ZWkJ o+ Ok

Seoond hdden layer output for k-th neuron:

k-fk (ne )

Output layer input for I-th neuron, layer szeN

netp| ZW”(ka +9|
k=1

Output layer output for I-th neuron:

oy = f7 (netg,)

Sigmoidal function d the outputs from ead neuron and its derivative:

f (nefgy)z %+ e " E_l
i (nets,)= f;(net;y)[l— £ (net;y)]
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Error terms for the output units:

opi = (Yp| ~Opi )f|OI (nelﬁu)

Error terms for the second hdden Iayer units:
k = f¢? (net plWik

Error termsfor the first hidden layer units:

. Nip
) le = fjhl (ne[';jl)kz 6Skzwﬂjz

Weight updates for the output layer:

Wik (t +1) = Wi(t) + NS nipe +afpwi (t—1)

Weight updates for the second hdden layer:

2.hl
Wy 2t +1) = Wi (t)+r7(5;;k h +orprkJ (t-1)

Weight updates for the first hidden layer:

wit (t+1) = wWil(t) + noptxy +ab wit(t-1)
) J p

The eror term for pattern p:
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