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With the tremendous growth in imaging applications and the development of f ilmless

radiology, the need for compression techniques which can achieve high compression

ratios with user specified distortion rates become necessary. Boundaries and edges in the

tissue structures are vital for detection of lesions and tumors, which in turn requires the

preservation of edges in the image. Unlike existing lossy transform-based compression

techniques such as FFT and DCT, edge preservation is addressed in this new compression

scheme. The proposed Edge Preserving Image Compressor (EPIC) combines lossless

compression of edges with neural network compression techniques based on Dynamic

Associative Neural Networks (DANN), to provide high compression ratios with user

specified distortion rates in an adaptive compression system well -suited to parallel

implementations. Improvements to DANN-based training through the use of a variance

classifier for controlli ng a bank of neural networks speed convergence and allow the use

of higher compression ratios for “simple” patterns. The adaptation and generalization

capabiliti es inherent in EPIC also facilit ate progressive transmission of images through

varying the number of quantization levels used to represent compressed patterns. EPIC

was able to achieve average compression ratios of 7.26:1 with an averaged Average Mean

Squared Error (AMSE) of 0.0147.
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Chapter 1. Introdu ction

Image compression is a field that is growing exponentially, due to its widespread

applications in digital imaging and transmission. With the evolution of digital storage of

visual information from grayscale still im ages to full -color real-time video images, ever

increasing bandwidths will be needed if very high compression ratio real-time image

compression techniques were not available. Image compression serves to alleviate this

problem by reducing the required bandwidths and allowing new applications, such as

videoconferencing, to coexist with existing data and information transmission on

computer networks.

With the development of f ilmless radiology, where medical images are digitized and kept

in electronic archives for instant access and display on graphical computer displays, the

need for effective data compression techniques becomes even more important. This is due

to the volume of image data that is generated every day, as well as the need to archive

images over extended periods of time. The storage requirements for a medium sized

hospital is expected to reach a few Gigabytes per year.

Nonetheless, existing image compression techniques are able to achieve compression

ratios from 2:1 to 20:1 for most applications. The higher compression ratios have been

achieved using “ lossy” techniques that remove visual information that is not perceived by

the human eye. Higher compression ratios can only be achieved at the expense of higher

distortion that degrades the quality of the image. This is due to the general architecture of

existing compressors, which are designed to be general enough to accommodate a variety

of input characteristics. This trade-off means that those compressors are unable to take

advantage of specific characteristics of the inputs to achieve better compression ratios

while maintaining the same or lower levels of distortion.
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To meet the challenges of achieving even high compression ratios, adaptive compression

schemes have been developed. They are capable of adapting to the characteristics of the

inputs as they vary. In this way, the image quality is preserved even though compression

ratios are much higher. It is the focus of this thesis to determine the necessary architecture

for implementing a successful compression system that meets the objectives of high

compression ratios and low distortion rates by using an adaptive technique to match the

compression system to the characteristics of the data. In addition, the suitabilit y of such

systems for the compression of medical images will be addressed as part of the research.

The emphasis in medical applications is to preserve important image features that

contribute towards accurate diagnoses. Therefore, edge information and image textures

are important components that must be preserved by the image compression system.

The requirements for different data compression systems are tied inherently to the

specific needs of the given application. For some applications, such as the compression of

computer programs, no distortion or changes in the data can be tolerated, and this requires

the use of lossless compression techniques. Ideally, all data compression schemes should

be lossless, since this would circumvent problems related to determining what constitutes

non-redundant information. However, Shannon’s entropy relation indicates that the

achievable compression ratio for general data is about 2:1 using lossless techniques. For

data sources such as still im ages, audio, and video, these ratios are insuff icient for coping

with the bandwidth and storage requirements of thousands of such images. A simple

uncompressed 256 x 256 sized image with 8 bits per pixel requires 64Kb of storage,

whereas in applications such as High Definition Television and medical image archiving

and transmission, thousands of images need to be processed, stored or transmitted. High

compression ratios are therefore necessary for meeting those requirements.
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From biological studies, it has been determined that our visual and auditory senses

perform some “masking” of the received inputs, rendering a portion of the received input

redundant and unperceivable. This enables us to devise lossy data compression

techniques which remove this redundant information, thus achieving much higher

compression ratios. The rate distortion theory details the tradeoff between achievable

compression ratios and the resultant distortion incurred on the data source [1]. This is the

rationale behind modern image compression techniques such as the JPEG still im age

compression scheme, which provides compression ratios of 5:1 to 20:1 with reasonable

distortions. Nonetheless, most of these algorithms do not provide uses with much control

over the specification of which components of the images are non-redundant, since the

associated cost-functions are usually global in nature and affect the entire image or

dataset. This presents a problem for applications such as the compression of magnetic

resonance images, since not all image data is equally important for image interpretation

and analysis.

The characteristics of an appropriate image compression scheme can be defined as

follows:

(i) the abilit y to specify which components of the image are vital for visual integrity

and contain the most information, and therefore, need to be preserved with very

littl e or no loss.

(ii ) the abilit y to achieve as high compression ratios as possible for the other portions of

the image, leading to significant savings in transmission and storage requirements.

(iii ) the need to control the distortion incurred by the high compression approach in (ii )

to within user specified levels.

(iv) the abilit y to adapt to changes in the input data stream.

(v) the abilit y to perform the compression and decompression as fast as possible, for

use in real-time applications.
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For JPEG and other transform-based compression techniques, the cost-function is the

energy or frequency content of the image, which is concentrated in the lower values.

Compression is achieved through the elimination of the higher energy or frequency

values, which are less concentrated and therefore deemed less important. However, the

high energy or frequency components of the image correspond to the edge information —

the use of transform-based coding techniques effectively results in the blurring of edges

and other high-frequency contents of the image. Furthermore, at high compression ratios

(which is controlled by the Q-Factor in JPEG), the distortion rate increases significantly

as well , resulting in “patchy” or “blocky” images. The JPEG algorithm has been devised

as a compromise for compressing a wide range of image types — as such, it does not

adapt to the characteristics of the input source in order to improve the tradeoff between

compression ratios and rate distortion. Real-time implementations of the Discrete Cosine

Transform (DCT) used in JPEG are also costly, since DCT is computationally intensive.

Medical image compression, such as the compression of magnetic resonance images,

requires the detection and recognition of boundaries in the tissue structures, for detection

of lesions and tumors. This requires the preservation of edges in the image, which defines

the various boundaries between the various anatomical structures and tissues in the

image. In addition, the permissible distortion rate is zero to very low values for medical

image compression due to its nature, resulting in a conflict between requirements (ii ) and

(iii ), since distortion rate and achievable compression ratios are directly related (a high

compression ratio implies a high distortion rate). Adaptation (requirement (iv)) is an

offshoot of requirements (ii ) and (iii ), since a high compression ratio implies that the

system is very eff icient in its abilit y to convert uncompressed input into compressed

output. Since actual data sources exhibit changes in their characteristics over time,

adaptive compression schemes are necessary for maintaining the high compression ratios

and specified distortion rates. Real-time compression and decompression systems will be
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required in the future, when interactive image reconstruction and 3D modeling is required

for assistance in patient studies, education and research.

Several of the requirements (ii )-(v) are well -suited for neural network based solutions.

Neural networks are adaptive in nature, due to their use of a training phase for learning

the relationships between the input data and required outputs, and their generalization

capabiliti es provide a means of coping with noisy or incomplete data; while new neural

networks presented in [2,3] provide a solution to the problem of achieving high

compression ratios at very low distortion rates.

In order to achieve the goals of developing a suitable image compression architecture for

magnetic resonance images, the following areas will be addressed in this thesis:

i) The preservation of edge information in the recovered image with no distortion.

ii ) The use of an image classifier to separate image blocks into different classes and to

compress the different classes of images using DANN-based networks that are

optimally trained for each class.

iii ) The improvement in the training set generation criteria, to eliminate redundant

patterns and speed training.

iv) The extension of the DANN-based neural network training approach to improve the

speed of convergence during training.

v) The combination of the different areas into a compression system.

The following chapters outline the details for the Edge Preserving Image Compressor

(EPIC), beginning with a survey of existing compression techniques, the high level

specification of the compressor architecture, the methods used to extend DANN-based

compression for EPIC, the EPIC compression algorithm, and the results of using EPIC

for compressing magnetic resonance images.
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Chapter 2. Survey of Previous Work

Image data compression and decompression can be classified into two basic categories,

lossless compression and lossy compression. Data compression is alternatively termed

source coding for the case of lossless compression, since it entails finding the most

compact representation of the data source. In general, lossless techniques are first

generation techniques which utili ze algorithmic approaches to compressing data. Lossy

techniques usually adapt to the characteristics of the human visual system for determining

what information is visually important.

2.1. Conventional Data Compress ion Techniques

2.1.1. Lossless Techniques

Lossless coding is based on the work in Information Theory by Shannon. The major

categories of lossless codes include: Huffman coding, Arithmetic coding, Run Length

Coding, and Markov source coding.

1) Huffman coding: To encode source data in the most compact form possible, variable

length codes based on the probabiliti es of each source symbol in a memoryless source are

used. Huffman coding is an optimal way of generating such variable length codes [4].

However, Huffman coding assumes a static source model, in which the probabiliti es of

each image component remain constant. This limitation may actually result in source

expansion if the characteristics of the image to be encoded are vastly different from that

of the source model [5].

2) Arithmetic coding: Arithmetic coding, and its derivative technique, Q-coding, is used

to overcome some of the limitations of Huffman codes. It is a non-block code, in that a

single codeword is used to represent an entire sequence of input symbols, in contrast to
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Huffman coding where a source symbol block corresponds to a codeword block. Instead,

it uses the real numbers to represent a sequence of symbols by recursively subdividing the

interval between 0 and 1 to specify each successive symbol. The limitation of this

technique is the precision required in performing the calculations and arriving at the code

word which will represent the entire sequence correctly.

3) Run Length Coding: If we view the image as a sequence of bits, we can often detect

long runs of zeros framed by ones, due to the presence of large uniform regions in most

images. Run Length Coding tries to exploit such inherent uniformity by using numbers to

count the runs of zeros. The disadvantage of Run Length Coding is that it only deals with

1D correlation within the image, and ignores spatial (2D) correlation.

4) Markov source coding: In order to deal with the dependencies often present in an

image where a large number of pixels are highly correlated (termed Markov sources),

coding schemes such as Lempel-Ziv-Welch (LZW) and its variants have been developed

which build a dictionary of the input source sequences. Compression occurs by the fact

that successive occurrence of the same sequence will be represented by pointers to

existing dictionary entries.

These first generation techniques achieve an average compression ratio of 2:1 to 3:1. The

performance of such methods is insuff icient for dealing with the storage requirements of

future imaging systems, partly due to the fact that they are 1-D algorithms that treat the

data as being a bit stream and are unable to take advantage of spatial correlation of image

data in 2D or 3D. Schemes that take advantage of such correlation include bit-plane

processing, predictive coding and Huffman encoding of differential images [5,6].

However, the lossless attribute of such schemes is viewed as being advantageous in the

event that the raw data can be reconstructed for use without any change in the data.
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2.1.2. Lossy Techniques

Lossy techniques all i nvolve the elimination of certain image components in order to

obtain a more eff iciently coded representation of the image [7]. The major division of the

different types of lossy compression techniques are Pulse Code Modulation (PCM)

derived schemes, Transform Coding schemes, Block Truncation schemes, Vector

Quantization schemes, and Sub-band Coding schemes. In addition, hierarchical coding

schemes which utili ze components from the various techniques have been proposed to

improve the compression ratios or reduce the processing complexity of a given technique.

A good survey of several of the above schemes can be found in [8,9].

1) Pulse Code Modulation: The PCM derived schemes work by using a predictor function

in order to determine the value of the current pixel based upon the values of previously

encoded pixels. The simplest predictor uses a 2 level quantizer and is termed Delta

Modulation. It has the disadvantage of not being able to represent quick changes in the

signal due to the limited step size of the quantizer. In order to handle larger variations in

the signal, Differential PCM (DPCM) can be used, with the predictor having more than

two levels. This is one of the more successful implementations of PCM schemes, in that

it can be modified to account for 2D spatial correlation in order to increase the data

compression ratio. Adaptive DPCM schemes have achieved compression ratios of 3.5:1

[5].

2) Transform Coding: Among the various lossy schemes, the most popular have been

those based on Transform Coding. These includes the Karhunen-Loeve transform (KLT),

Discrete Fourier transforms, Walsh–Hadamard transforms and Discrete Cosine Transform

(DCT) (utili zed in the JPEG standard), which all attempt to reduce the image correlation

in order to represent it in as few basis functions as possible.
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2a) KLT gives the minimum distortion for any given image, but it is never used in

practice due to its computational complexity. For every image, an autocovariance matrix

has to be evaluated together with its eigenvalues and eigenvectors. However, the KLT

represents the upper bound for comparing compression eff iciency of different techniques.

 2b) Fast Transforms: The following transforms are linear and can be decomposed into

fast variants that have O(N log2 N) complexity instead of the normal O(N2) associated

with the original transforms. Fourier Quantization [10] is a transform technique which

has been investigated for digitizing hand images. In contrast, DCT is a fast but

suboptimal transform which operates on a small section of the image at a time. This

invariably results in “blocking” effects where subimages show sharp transition artifacts or

block-like appearance at the edges of each subimage. In addition, transform techniques

involve a lot of computationally intensive steps during compression and decompression,

making software implementations cumbersome for real-time applications. However,

dedicated processors have started to appear for performing the transform manipulations

quickly. Variations of the DCT technique that are documented in [11–13] attempt to

improve its performance and reduce the blocking artifacts. One approach is to perform

the DCT on the whole image as a single frame [13]. This alleviates the blocking effect at

the expense of compressor complexity and memory requirements. Acceptable

compression ratios of 4:1 for MR images to 20:1 for CR chest images were recorded.

Adaptive DCT (ADCT) has been investigated, which uses a variable encoding scheme for

the transformed image, allocating more bits to coeff icients with higher values [14]. This

improves the compression ratio by 25-30%.

3) Vector Quantization: Another approach utili zes Vector Quantization techniques [5] for

the lossy compression of MRI images [15]. Techniques based on Vector Quantization

have asymmetrical processing requirements. Decoding is greatly simpli fied due to the use
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of a Vector Codebook which is used to reconstruct the image. However, the

computational overhead involved in selecting optimal vectors for encoding the images is

quite high, as well as the choice of the codebook itself. Variations of the technique can be

used to provide for image error correction and distortion control capabiliti es using

variable-sized image blocks [16] as well .

4) Subband Coding: Subband coding with DPCM quantization and post quantization

compression [17] has been utili zed for image compression of non-medical images. It

utili zes the characteristics of the human visual perception system to filter out portions of

the image spectrum to which the eye is insensitive. The technique has achieved very good

compression ratios, with the JPEG standard test image achieving up to 0.23 bits/pixel.

5) QuadTree Based Techniques [18,19]: Other compression techniques exploit the

structure of the images in order to improve the compression ratio. By sectioning the

image into regions which have similar characteristics, the complexity of representing

each region effectively is reduced. Examples of such techniques are QuadTree

representations and Region of Interest specification in the image. QuadTree Based

techniques divide the picture recursively into quadrants and achieve compression by

encoding a uniform quadrant by an average pixel value. Details are preserved by

subdividing quadrants until the pixel values can be encoded using the average value

described previously. This is an approach which does not require complex transformation

techniques.

6) Block Truncation Based Techniques [5]: This technique, termed Block Truncation

Coding (BTC), divides the image into small blocks, and then represents the block by the

average value and standard variation of the pixel values obtained through a moment

preserving function. In addition, a bitmap obtained by thresholding using the average

value is then generated for the block. This effectively reduces pixel values to single bits,
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with the additional overhead of storing the mean and variance of each block. More

recently, there have been efforts to combine the advantages of BTC, VQ and DCT in a

hybrid approach [20]. The achieved compression ratio is about 10:1.

2.1.3. Lossy With Lossless Residual Encoding Techniques

1) DPCM with Residual Image Coding [5]: Since the abilit y to reconstruct the original

image may be extremely important if advances in medical image processing enabled

better diagnosis using the raw data, the abilit y to perform lossy encoding with residual

encoding of the errors will be extremely important. This technique basically compares the

raw image with the compressed image to obtain the residual (error) image. The residual

image is stored and can be used to reconstruct the original image with reduced storage

requirements. DPCM with residual image coding is such an example.

2) Progressive Transmission (Hierarchical Interpolation) [5]: Another strategy to reduce

transmission and retrieval time for initial clinical use is the hierarchical approach where

the original image and a series of compressed images with increasing compression ratios

are stored in an image hierarchy. The image with the lowest acceptable compression ratio

is transmitted first for reference, and the original image is transmitted later for primary

diagnosis. This approach trades off transmission time for storage requirements.

2.2. Data Compress ion Using Neural Networks

Neural networks are highly parallel computational systems with simple computational

elements called neurons arranged in hierarchical layers. Each neuron has a set of inputs

with individual weights associated with each input. The output of each neuron is a non-

linear response of the weighted sum of the inputs. Neural networks undergo “ training” in

order to condition the outputs to a desired response when presented with an input.

Training proceeds by measuring the error present at the output between the actual and
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desired responses. This error is then used to adjust the weights associated with each input,

and hence the network adapts until the outputs converge to the desired response for a

given input. After a suff icient amount of training, the neural networks can then be used

for the compression of images not used for training. The adaptabilit y of the output

response to accommodate unknown inputs is the key to the success of neural network

based techniques. Compression is achieved by the means of multi -layered neural

networks that have small hidden layers (in comparison to the output layer) [21].

2.2.1. Neural Network Implementation of Vector Quantization

A recent work using neural network approaches to image compression is based on Vector

Quantization. Since the selection of the appropriate vectors for representing a given

image is basically a classification problem, neural networks which have been trained to

do so optimally will greatly increase the compression speed. Nevertheless, reported

results still i ndicate a rather high distortion rate, with a signal to noise ratio (SNR) of 26.9

for a 20:1 compression ratio [22]. Further improvements in the error rates are necessary

before this technique can be applied to solve medical image compression problems.

2.2.2. Cottrell/Munro/Zipser Technique

Most of the neural network based techniques are derived from the work by Cottrell ,

Munro and Zipser [23]. They developed a multil ayered perceptron neural network with

back propagation as the error learning function.

1) Back-propagation with Multi -level Neural Nets: From [21], Multi -Level Neural Nets

are trained using back-propagation with the block sampled original image at the input and

output in order to obtain a reduced vector representation of each block in the hidden

layer. The internal (hidden) representation of the block is the compressed form of the

image to be transmitted since there are less hidden layer units than at the input or output.
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By applying the internal vector to the decompressing network, the original image can be

recalled. This approach uses a form of self-organization for obtaining the reduced

dimension feature space. This is similar to Principal Component Analysis in its mode of

operation. [24,25] are descriptions of systems which utili zed this technique for data

compression in non-medical environments. Neural networks are trained using a set of

sample images, and then the weights obtained through the training phase are used to

compress actual images.

2) Non-quadratic Error Functions for Back-propagation: It has been shown that back-

propagation training using quadratic error functions are shown to be equivalent to

performing KL transforms on the image [26]. Improvements in image restoration using

non-quadratic error functions and decreasing convergence time by constraining the neural

network weights were proposed as solutions to the inherent shortcoming of classic back-

propagation based training [26]. The traditional measure of success in training neural

networks is based on the mean square error (MSE) observed at the output between the

training images and the output of the neural network. However, it is found that MSE is a

very unreliable measure for determining the correctness of the weights used for

compression, since the output error (from observing the decompressed images) can be

significant when the global error (as measured using MSE during the training phase) is

low [27]. Data compression ratios of 8:1 were achieved. The solution to this dilemma was

to use a new training scheme called the epsilon descent technique.

3) Adaptive Hidden Layers: Other attempts to improve the compression results include

using neural networks that have a variable number of hidden units that adapt during the

training process in order to escape local minima in the error function. Proper selection

and training of the neural networks is crucial for its success. This architecture can adapt
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to different input data characteristics through its adaptive hidden layer which provides the

necessary learning support to achieve convergence in the training process.

4) New neural network based adaptive compression methods which overcome the

traditional drawbacks associated with back-propagation based neural networks, such as

the static nature of network architectures, unbalanced errors of individual training

patterns, and being trapped in local minima during training, have been developed [2,3].

This new neural network architecture, termed Dynamic Autoassociative Neural Networks

(DANN) has been shown to provide excellent control over the error rates while

maintaining user-selectable compression ratios.
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Chapter 3. Edge Preserving Image Compressor (EPIC) Architecture

The proposed Edge Preserving Image Compressor (EPIC) architecture is a new hybrid

image compression technique combining conventional techniques with DANN-based

neural networks. EPIC utili zes techniques that are similar to the approach of the

edge/non-edge compression algorithm proposed in [28], which in turn is derived from the

synthetic-highs compression technique. However, instead of the adaptive DCT

compression used for the non-edge image as is done in [28], neural network based

compression is utili zed, and the edge-subtraction step is eliminated entirely. It is designed

to be modular in nature, and improvements in each module can be incorporated easily

into the architecture, resulting in better accuracy and performance of the system. One of

the major criteria of this architecture is the preservation of edge information of the

original image. Since edge detection is a vital step in any image processing and

manipulation task, the inclusion of this step into the image compression architecture

results in two distinct advantages: the elimination of the need for edge detection in

subsequent downstream processing of the images, and the guarantee that edge

information is not lost during compression, unlike many transform-based methods. The

edge information extraction is useful for other reasons as well . Correlation of anatomical

features between images obtained using different modaliti es are vital for various

diagnostic functions involving tissue identification, classification, and metabolic

modeling. For instance, CT and MRI image features are used to localize anatomical

features obtained from PET and other modaliti es with less distinct image features and

boundaries. Examples of such applications can be found in [29–31].

Since edge information has been preserved, we can compress the rest of the image at high

compression ratios with a user-controlled distortion rate without significantly affecting

the overall picture quality of the reconstructed image. Nonetheless, for certain
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applications such as medical imaging, very minimal or no loss compression is required

where image integrity is of utmost importance. The somewhat contradictory goals of high

compression ratios and low error rates therefore dictates the use of an adaptive

compression technique which could satisfy those two constraints. Neural network based

techniques, which have shown significant advantages over other techniques in their

adaptation and generalization capabiliti es, have been selected for this purpose. The neural

networks are trained to compress image features present in specific types of images. By

targeting a specific data compression domain for the neural network compressor, the

architecture aims to achieve both objectives through the effective use of adaptation and

generalization capabiliti es inherent in neural networks.

The second goal of the compression architecture is to create a system that is easily

converted to parallel implementations. Neural network systems are well suited to such

implementations due to their uniform structure and the distributed nature of the neural

computation, output, and weight adaptation processes. Hardware implementation of

neural network topologies will l ead to the development of compression systems that can

perform their tasks in real-time. The edge detection step can be executed in parallel with

the neural network based image compression process since the edges are coded

independently using chain-coding. This enables us to select the most appropriate edge

detection technique for the given images, while improvements in edge detection

algorithms and changes in image integrity criteria can be “plugged into” the compression

system without affecting the rest of the compression process.

Another means of parallelizing the image compression process is through the use of a

bank of neural networks for the compression process. The image is subdivided into

uniform sized blocks that are fed to a bank of neural networks. Each network has been

previously trained for a specific class of image data based on the variance value of the
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image block. The appropriate network is selected for the given image block, and

compression of each block proceeds independently of the other blocks. It is therefore

possible to pipeline and parallelize this process for the compression of blocks belonging

to different classes, achieving significant improvements in processing speed. The

advantage of using a bank of neural networks tailored to specific image classes is the

capabilit y for parallelism during the training process. The entire training set is divided

over the bank of networks, and the number of patterns that each network is required to

learn is therefore reduced, or alternatively, the system is capable of learning more images,

improving its adaptation capabiliti es.

Among the various edge detectors that have been developed, the Second Derivative

Exponential Filter (SDEF) [32] and the Canny filter [33] have proven to be very accurate

in terms of edge localization. However, in empirical use, the SDEF filter tends to enhance

noise effects, and a noise removal stage using a speckle filter is necessary for eliminating

spurious and noisy edges. In contrast, the Canny filter, with its adjustable window size

and edge thresholds, produces very clean edges without the need for noise removal. EPIC

provides the option of selecting either Canny or SDEF edge detection schemes during the

compression phase. A classifier network examines each block of the image and

determines which of a bank of neural nets previously trained is best suited for the

compression task using a simple variance classifier. The abilit y of the neural network to

generalize and be trained to adapt to specific types of patterns in the input image is

expected to yield better compression ratios and image fidelity as compared to

compression using conventional DCT techniques, and is inherently more parallelizable in

hardware implementations due to its uniform structure and simple processing

requirements. The neural network architecture utili zed in EPIC is a multi -layered

Perceptron network with two hidden layers, which has been used successfully for image

data compression in [2,3]. The input vector is compressed into a neural network pattern



18

representation using a compression ratio dictated by the ratio between the number of

input neurons (equal to the number of pixels in the image block) and the number of

neurons in the second hidden layer. The compressed pattern outputs from the neural

network compressor is then coded using either a variable bit-rate linear predictive coder,

or quantized using a fixed bit-rate with marginally higher distortion. Optional Lempel-

Ziv-Welch (LZW) encoding is applied to the outputs of both the edge coding and neural

network compressors to remove any residual redundancies. These patterns are then stored

or transmitted for use in reconstructing the images at the decompressor.

The decompressor performs the corresponding optional LZW decoding on the received

edges and compressed patterns, as well as corresponding linear predictive decoding on

the compressed patterns (if required), and passes it through a bank of neural networks

which converts the compressed patterns into recovered output blocks that are used to

form the non-edge image. This non-edge image is then overlaid with the decoded edge

pixels to reconstruct the reconstructed image.

The compression system can be shown in the following diagrams (Figures 3.1 and 3.2):
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Chapter 4. Extension o f DANN Architecture & Training Algorithms for EPIC

Dynamic Associative Neural Networks (DANN) have been used effectively for image

compression [2,3]. Consequently EPIC utili zes DANN-based neural networks for

compressing the non-edge image. A brief summary of DANN characteristics is provided

in the Appendix. However, DANN training suffers from the problem of slow

convergence, since the descending epsilon training technique [27] is a very slow process.

There are often specific input patterns that are considered very diff icult to learn. The

single network used for DANN compression to compress all possible input patterns

therefore has to account for those diff icult patterns in its learning process as well . This

further increases the required network capacity and complicates the learning process since

the network often has to adapt to input patterns with very different characteristics. All

these factors limit the abilit y to extend DANN-based compression techniques to provide

very high data compression ratios while providing very low error rates for use with

application where data fidelity is extremely important. EPIC improves upon DANN-

based compression through the following features:

i) The use of a bank of DANN networks in place of a single network for processing

the incoming data stream, under the control of a variance classifier.

ii ) Improvements in the training set generation procedure through the elimination of

duplicate training vectors which are close together in Euclidean space, controlled by

the use of a similarity threshold.

iii ) Improvements in the training process, by specifying termination criteria for

pathological training conditions, where the network error is increasing continually

or is stuck for a given number of training epochs.

The changes to DANN architectures and training algorithms are detailed in the following

sections.
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4.1. Variance Class ifier Selector for Controlli ng a Bank of DANN Networks

A bank of four-layered feedforward perceptron networks (similar to those used in DANN

compression) is used to process the incoming data stream. The data is classified using a

simple variance classifier into 1 of P classes, where P is determined heuristically from

variance characteristics of the data, and compressed by the corresponding network. In this

way, the cost of compressing complex patterns can be isolated from the cost of

compressing the other patterns. The network used to compress a pattern with low

variance will require a small first hidden layer and provide very high compression ratios,

in contrast to other networks which have larger first hidden layers, and possibly lower

compression ratios. The outline of the training process is given in Figure 4.1.

Bank
of

4-layered
feedforward

DANNs
under

supervised
training

Train.
Image

Image Block
Classification

Pattern
Formation

DANN
Selector

Training Sets
for DANN

Neural Network Image Compressor Training Outline
Figure 4.1: Compression System Training Block Diagram

4.2. Thresholded Training Set Generation Procedure

The generation of the training set for training the bank of P neural networks is to take a

set of training images, and partition each image into N x N sized blocks, overlapping by

N/2 pixels, for use in generating the training set. The variance of the block is calculated

for use in the classification step. The blocks are classified into one of P classes, based on

predefined variance thresholds determined empirically through statistical analysis of the

characteristics of typical images, and converted into a training vector. The candidate
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vector belonging to the p-th class is then compared with all existing training vectors in

the training set for that class to determine if it exceeds a “similarity threshold” defined to

eliminate redundant training vectors lying close together in Euclidean space. The user

controllable “similarity threshold” serves to reduce the size of the training set and avoids

overtraining through the use of highly similar training vectors, which reduces the

generalization properties of the networks. This is ill ustrated in Figure 4.2.

For given set of training images
Partition image into N x N blocks, which are overlapping by N/2
For each block (parallelizable)

classify the block into p �  P classes using predefined variance thresholds
compare block with all existing patterns in the p-th training set
if the block exceeds the similarity threshold

add block to the p-th training set
endif

endfor
endfor

Figure 4.2: Training Set Generation Pseudocode

4.3. Modified DANN Training Procedure

The neural network training algorithm used in EPIC is based on the DANN training

procedure outlined in [2]. Each neural network in the bank of P networks is subjected to

DANN training, with some modifications designed to detect pathological conditions and

reduce time spent in unproductive training. Among the improvements are convergence

detection primitives, which measure the slope of the error curve to determine if the

training process is stuck (wobbling) or if the error function is increasing as training

proceeds (increasing error). Thresholds are set for the number of iterations the network

can exist in these conditions before that particular phase of training is aborted and control

returned to the calli ng routine.
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DANN training operates on two levels: the higher level is the generative process by

which the network grows and adjusts the number of hidden nodes needed to learn the

required mapping between the inputs and the outputs. This controls the dynamic aspect of

the network. The lower level is based on backpropagation training, in which the network

with a given hidden layer size undergoes modification of its weights to reduce the value

of the error function and converge towards predefined error thresholds. Training is

controlled by two parameters, Eta (learning rate), and Alpha (momentum). The error

thresholds are user-selectable and hence provide users with a known bounded error

characteristic for the compression system. The backpropagation training is further refined

through the use of the descending epsilon training approach [27], which forces the error

curves for each pattern to within a set interval as the training progresses, resulting in a

more even distribution of errors throughout the entire training set. In addition, Eta and

Alpha are scaled to successively smaller values at each interval of descending epsilon

training to provide better convergence characteristics. Validation of DANN training is

done using a different set of patterns than those used for descending epsilon training, to

provide an objective measurement of the training performance.

The modified descending epsilon training process is given in Figure 4.3. For each training

pattern, it is propagated through the network and the outputs compared to the desired

outputs for computing the error values for each output node. If the absolute error is less

than the Epsilon parameter, it is set to zero, otherwise the error is kept. If all output errors

are zero, that means the network has been trained correctly for that pattern and the

number of correct patterns is incremented. Otherwise, the count is reset to zero and the

adjusted errors backpropagated through the network for weight adjustment. If all the

patterns in the training set passed the error adjustment test (i.e.: number of correct

patterns is equal to the number of training patterns), then the epsilon parameter is

decremented and the process repeated until the final epsilon value is reached or the
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network fails to converge within a specified number of training epochs. If the error

function is wobbling or increasing, the epsilon training phase is aborted and DANN

training resumes control.
Set Epsilon to Start Epsilon
While (not done)

Get next pattern from training set
Propagate pattern through network
Adjust output errors using Epsilon parameter:

For each neuron in output layer
If (| Output – Expected Output | < Epsilon)

Error = 0
endif

endfor
If all output neuron errors = 0

Increment Num. Correct Patterns
If (Num. Correct Patterns == Num. Patterns in training set)

If (Epsilon > Stop Epsilon)
decrement Epsilon by EpsilonStep
Scale Eta, Alpha by respective ratios

Else
done = 1

endif
endif

Else
Backpropagate errors
Adjust network weights
Reset Num. Correct Patterns

endif
Increment Pattern Counter
If (not done) and (Pattern Counter == Num. Patterns in Training Set)

Increment Num. of Epochs
Validate Network, obtain avg. pattern error for network
Calculate slope of Error function
If (error function is wobbling)

Increment Stuck count
If (Stuck count >= Max. Stuck count)

done = 1
endif

Else
Reset Stuck count

endif
If (error function is increasing)

Increment Error Increasing count
If (Error Increasing count >= Max. Error Increasing count)

done = 1
endif

Else
Reset Error Increasing count

endif
if (Max. Epochs reached)

done = 1
endif

endif
endwhile

Figure 4.3: Modified Descending Epsilon Training Pseudocode
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Modified DANN training is given in Figure 4.4. This higher level training procedure

begins by first defining an initial first hidden layer size and the maximum first hidden

layer size which the network can reach before training is declared unsuccessful. DANN

training is further divided into a Growing Phase, a Shrinking Phase, and a Final (cleanup)

Phase. During the Growing Phase, the network is subjected to descending epsilon

training, and if the network fails to converge to the specified target error, the first hidden

layer size is incremented by m neurons and descending epsilon training resumed.

Pathological conditions such as a stuck error function or an increasing error function are

detected and training aborted (declared unsuccessful) in such cases. This helps the

network designer by indicating that either the given first hidden layer size is insuff icient

for learning the given training patterns, and therefore the initial first hidden layer size

needs to be increased, or that other parameters such as the learning rate and momentum

need to be adjusted.

If the Growing Phase completes successfully, the network is then subjected to a

Shrinking Phase to remove any redundant hidden layer nodes, since the network becomes

overconstrained after undergoing the growth process. The Shrinking Phase is closely

monitored by storing intermediate network states to ensure that the target error is still met

if a marginal first hidden layer node is removed. If the target error is not met, the last

network state which satisfies the error constraints is recovered from temporary storage

and used in the Final Phase.

The Final cleanup is done to enable the network to settle into its new topology and

possibly improve its error performance beyond the targeted values. Backpropagation

training (without the use of descending epsilon training) is performed once on the

network and this results in the successfully trained network.
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The EPIC training process for each of the P networks can be done in parallel, decreasing

the time required for learning a given set of images compared to the original DANN

training process.

While (Network not converged) and (number of training iterations not exceeded)
Growing Phase:

While (Num. first Hidden Layer neurons (NHid1) < Max NHid1)
and (Network not converged) and (not incrdone)

Perform Descending Epsilon training
Validate Network using Validation Set, obtain avg. pattern error for network
Calculate slope of Error function
If (error function is wobbling)

Increment Stuck count
If (Stuck count >= Max. Stuck count)

incrdone = 1
endif

Else
Reset Stuck count

endif
If (error function is increasing)

Increment Error Increasing count
If (Error Increasing count >= Max. Error Increasing count)

incrdone = 1
endif

Else
Reset Error Increasing count

endif
If (not incrdone) and (NHid1 < Max NHid1) and (Network not converged)

Increment first hidden layer by m neurons
Reset Eta, Alpha

endif
endwhile

Shrinking Phase:
Store Network state
While (Network convergence criteria met) and (NHid1 > 1)

Decrement first hidden layer by one neuron
Reset Eta, Alpha
Perform Descending Epsilon training
Validate network using Validation Set

(check avg. net error, network convergence criteria)
if Validated, Store new Network state

endwhile
Final Phase (cleanup):

Restore last valid Network state
Perform Backpropagation training
Store Network state

endwhile

Figure 4.4: Modified DANN Training Pseudocode
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Chapter 5. EPIC Compress ion Algorithm

The EPIC compression technique is essentially an asymmetric compression scheme. The

processing overhead is incurred at the compression phase, due to the edge detection and

block classification steps. The decompression phase only requires the reconstruction of

the non-edge image and the overlaying of the edge pixels onto that image to result in the

reconstructed image.

An incoming image of size n x n is passed through an edge detector for extracting the

edge pixels for lossless chain coding while simultaneously being subdivided into N x N

non-overlapping blocks for processing by the neural network based lossy compressor.

The block is classified into 1 of P classes. This process of decomposing the image into

individual blocks for use in classification can be performed in parallel. The classified

blocks are then fed to the bank of neural networks for compression. Each network has

been trained previously using image blocks that have the same variance characteristics

and is thus well adapted for those blocks. The second hidden layer compressed patterns

are then extracted, and either coded using a zeroth order Linear Predictive Coder at a

variable bit rate, or alternatively, quantized at a fixed bit-rate with marginally higher

distortion. Associated with each compressed pattern is the network class for use in

decompression. The chain coded edge image, as well as the compressed patterns, are

optionally further compressed using the LZW-based UNIX compress command to

remove any further redundancies in the data stream. This usually results in no more than

10% improvement in the compression ratio, however, and is obtained only from the chain

codes. It is conceivable that this step could be eliminated with the use of a Huffman coder

for the chain codes.
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Decompression is relatively straightforward. The compressed non-edge pattern and edge

image are first decompressed using the UNIX uncompress command as necessary, and

the compressed patterns extracted and fed to the decompressors based on their network

class for decompression into the respective image blocks. The block decompression step

can be performed in parallel. The various blocks are used to form the non-edge image. In

addition, the chain coded edge image is decoded and overlaid onto the non-edge image to

give the reconstructed image.

The algorithms for compression and decompression are given in Figures 5.1 and 5.2.

For given set of images
Perform Edge Detection on the image
Store Edges and their Gray values using chain coding
Partition image into N x N non-overlapping blocks
For each block (parallelizable)

classify the block into p �  P classes using predefined variance thresholds
compress the block using the pth neural network
Quantize output of second hidden layer

endfor
Store compressed patterns using differential li near predictive coding,

or fixed-bit rate quantization for higher compression ratio
Optional edge compression stage using LZW encoding for storage/transmission

endfor

Figure 5.1: EPIC Image Compression Pseudocode

For given set of images
LZW decoding (correspond to optional encoding) of edge compressed images
Decode chain of Edges and their Gray values
Perform differential li near predictive decoding of compressed patterns (as needed)
For each block (parallelizable)

decompress block using the p-th neural network specified in pattern’s class info.
Form N x N non-edge image block

endfor
Overlay Edge pixels on non-edge image to obtain reconstructed image

endfor

Figure 5.2: EPIC Image Decompression Pseudocode
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Chapter 6. Quantitative Measures of EPIC Performance

6.1. Compress ion Ratio of the EPIC System

Since the image is decomposed into edge and non-edge portions, we can define

compression ratios for the non-edge image only (NE-CR), the edge information only (E-

CR), as well as the combined compression ratio (CCR), defined as the ratio of the size of

the original image to the combined sizes of the edge information and non-edge image.

The combined compression ratio for an image (CCR), given a bank of neural networks

which can have different compression ratios for each network, is given by:

CCRimage =
Sizeorig

Sizecompr

Sizeorig = n2bpixel

Sizecompr = Sizeedge + Sizepatterns

Sizepatterns = Nh2i
bh2 i

ki
i=1

P

∑
where

n
2
:  number of pixels in the image (dimensions n× n)

N:  dimension of each image block

K:  total number of blocks per image. K = n2

N
2

bpixel:  size of pixel in bits

Sizeedge:  size of edge pixel data (chain- coded graylevel edges)

Sizepatterns:  size of compressed pattern data

Nh2i
: number of second layer hidden neurons in network i

bh2i
:  bits per compressed channel symbol for network i

ki: :  number of blocks processed by network i,  where ki
i =1

P

∑ = K

If we let Nh2i
= Nh2 ,bh2i

= bh 2,  we get:

Sizepatterns = Nh2bh2 ki
i =1

P

∑ = Nh2bh2K

which is the case where all networks have the same compression ratios
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However, since the weights interconnecting the second hidden layer and the output layer

have to be stored or transmitted to the decompressor in order to recover the image, the

compression ratio for the system will t hen have to incur the cost of storing or transmitting

those weights once, for a series of m images compressed using those weights:

CRsystem=
m× Sizeorig

m× Sizecompr +Sizeweights

Sizeweights = bweightNout Nh2i

i=1

P

∑ = bweightNout Nh2i

i =1

P

∑
where

m:  number of images compressed using the current weights

bweight:  bits per weight value

Nout:  number of neurons in the output layer. Nout =  Nin = N2

Therefore

CRsystem= mn2bpixel

m Sizeedgej + bh2 Nh2i ki
i =1

P

∑
 

 
 
 

 

 
 
 + bweightNout Nh2i

i =1

P
∑

where

Sizeedgej
:  size of edge image for image j (of m)

Note that these values do not include the slight overhead incurred by the use of

descriptive file headers.

6.2. Image Quali ty Error Measures

The error measures used in the discussion of the results are the Mean Squared Error

(MSE) and the Peak Signal to Noise Ratio (PSNR), two common qualitative measures

used for comparing accuracy of compression systems [1]. They are defined as:
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MSE=
xij − xij

'( )2

j =0

n−1

∑
i =0

n−1

∑

xij
2

j =0

n−1

∑
i =0

n−1

∑

PSNR= 10log10
n2 (maxgraylevel)2

xij − x ij
'( )2

j =0

n−1

∑
i=0

n−1

∑

 

 

 
  

 

 

 
  

dB

where

xij :  original pixel value at (i, j)

xij
' :  reconstructed pixel value at (i, j)

maxgraylevel:  maximum possible graylevel value for the image
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Chapter 7. Design o f Experiments and EPIC Compress ion Results

7.1. Experimental Procedure

A set of MR images, comprising of a series of 24 images, were used for the training and

compression tests. The images were numbered from 00 to 23, categorized roughly into

head images (mri00 to mri11), and chest images (mri12 to mri23). The Canny edge

detector was used for all the compression experiments as it was found empirically to

provide much better defined and cleaner edges than the SDEF filter.

The training and validation images were partitioned into 16 x 16 blocks, overlapping by 8

pixels horizontally and vertically, for creating the training and validation patterns. The

similarity threshold was set equal to 50.0, defined as the squared Euclidean distance

between the candidate vector and existing vectors in the training set. This helped

eliminate a lot of similar vectors which constitute non-image areas in the MRI (since the

actual image area is a circle inscribed within the square image frame). Each bank of

DANN networks contained eight networks, which were selected via the variance

classifier network selector using heuristics based on variance thresholds defined through

previous statistical analysis of the MRI training set. The variance of a block was

calculated with respect to the values of pixels within the block. Each block is classified

based on three variance thresholds, the first defined for the entire block, the second

defined based on quarter blocks, and the third defined based on sixteenth-blocks. The

thresholds were set equal to 10.0, 90.0, and 300.0, and were utili zed by the variance

classifier to select one of the eight DANN networks for subsequent training and

compression. The DANN networks were numbered 0 to 7 for the various variance

classes, with Network 0 corresponding to Class 1, and Network 7 corresponding to Class

4. The heuristic given in Table 7.1 was used to perform the variance classification:
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Variance Class Ntwk
Entire block variance < 10.0 1 0
Block variance > 10.0,
all 1/4-block variances < 90.0

2 1

Block variance > 10.0,
one 1/4-block variance > 90.0

2q 2

Block variance > 10.0,
two 1/4-block variances > 90.0

2h 3

Three or four 1/4-block variances > 90.0,
all 1/16-block variances < 300.0

3 4

Three or four 1/4-block variances > 90.0,
one to four 1/16-block variances > 300.0

3q 5

Three or four 1/4-block variances > 90.0,
five to eight 1/16-block variances > 300.0

3h 6

Three or four 1/4-block variances > 90.0,
more than eight 1/16-block variances > 300.0

4 7

Table 7.1: Variance Classifier Neural Network Selector Heuristic

The compression ratios of each network, defined as the ratio of the number of neurons in

the input/output layers to the number of neurons in the second hidden layer, were also

defined based on the variance class. Higher compression ratios were used for variance

classes 1 and 2, while lower compression ratios were used for variance classes 3 and 4 to

handle the more complex image blocks.

For Experiment (Expt.) CTEST4, the training set was generated from the first ten images

(mri00 to mri09), while ten images (mri10 to mri19) were used as the validation set

during training. Remaining images (mri20 to mri23) were used as additional test images.

The values of eta and alpha used during training were chosen to be small , in the range of

0.1 (eta) to 0.2 (alpha), after it was determined through training trials that larger values

cause the network error to decrease rapidly at the beginning but do not converge

suff iciently during later phases of the training process. The values of eta and alpha were

also set to decay as descending epsilon progressed to enable the network to follow the

backpropagation gradient descent more precisely. Epsilon_start was set to 0.50001 at the

start of the descending epsilon training process, and decreased to 0.00001 (epsilon_end)
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in stepsizes of 0.05 (epsilon_step). The target Average Mean Squared Error (AMSE) was

set to 0.01, with the maximum number of epochs for descending epsilon training set to

500, with validation performed every 20 epochs. The descending epsilon training process

was aborted if the network error was stuck for 10 validation cycles, or 15 cycles with

continually increasing errors. Validation for DANN training was performed every time a

descending epsilon training cycle was completed. If the target AMSE was not reached,

DANN training would change the first hidden layer size until the maximum size was

reached, or if the network error was stuck for 10 validation cycles or 10 cycles with

continually increasing errors.

It was observed that for network classes with lower variances, the training parameters had

to be adjusted for slower convergence, since the low variabilit y training vectors results in

very low average network errors. The training parameters for Networks 0 to 2 were

chosen as — eta: 0.1, alpha: 0.1, Epsilon_start: 0.0000101, Epsilon_end: 0.0000001,

Epsilon_step: 0.000005. In addition, during the later stages of training for the remaining

networks, the epsilon parameter had to be reduced to much lower starting values to

enable the network to converge towards the actual errors. Otherwise, the images became

too “smoothed” and details were lost. Nonetheless, not all networks were able to

converge to the target error rates, especially for the higher variance classes. However, the

convergence property for Network 0 (Class 1) was found to be superior, and that

characteristic was exploited in increasing its compression ratio to 256:4 (64:1) to provide

a higher overall compression ratio. The results for the modified Network 0 architecture

are categorized under Expt. CTEST4_A. The trained EPIC neural-network topologies for

Expt. CTEST4 and CTEST4_A are given in Tables 7.2 and 7.3. The number of neurons

in the input and output layers are equal to 256 because images were subdivided into non-

overlapping 16 x 16 blocks for compression.
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CTEST4
Ntwk Input First

Hidden
Second
Hidden

Output

0 256 100 8 256
1 256 70 8 256
2 256 250 8 256
3 256 231 8 256
4 256 213 16 256
5 256 211 16 256
6 256 218 16 256
7 256 186 16 256

Table 7.2: EPIC neural-network topology for Expt. CTEST4

CTEST4_A
Ntwk Input First

Hidden
Second
Hidden

Output

0 256 90 4 256
1 256 70 8 256
2 256 250 8 256
3 256 231 8 256
4 256 213 16 256
5 256 211 16 256
6 256 218 16 256
7 256 186 16 256

Table 7.3: EPIC neural-network topology for Expt. CTEST4_A

7.2. Compress ion Results

For experiment CTEST4 and CTEST4_A, the compressed outputs were quantized to 8

bits resolution for storage. In the case of MR images, the chain-coded edge information

constitutes a much larger proportion of the combined compressed image size (which

includes both edge and non-edge data). This constrains the upper bound for achievable

Combined Compression Ratios (CCR) to the compression ratio for the edges (E-CR). In

Expt. CTEST4, the average compression ratio achieved for the non-edge image (NE-CR)

was 20.9:1, while the average compression ratio for the edge pixels (E-CR) was 10.42:1.

The average Combined Compression Ratio (CCR) was 6.95:1. The average AMSE of the
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combined image (edge and non-edge) was 0.0147, which is equivalent to a PSNR of

71.02 dB. It could be seen that edge preservation improved the fidelity of the

reconstructed image over that of the non-edge image only.

In contrast, for Expt. CTEST4_A, The NE-CR for Expt. CTEST4_A was higher due to

the use of higher compression ratios for Network 0, leading to an improvement in the

CCR to 7.26:1, while the higher compression ratio did not increase the overall AMSE

from that achieved in Expt. CTEST4. The results for the set of 24 MR images

compressed using EPIC are presented in Table 7.4 and Table 7.5:

EPIC Compression Expt. CTEST4
Image #QBits NE-

PSNR
NE-

AMSE
E+NE-
PSNR

E+NE-
AMSE

NE-CR E-CR CCR

mri8I00 8 70.46 0.0269 72.64 0.0217 21.02:1 9.86:1 6.71:1
mri8I01 8 70.46 0.0181 72.49 0.0148 20.86:1 9.39:1 6.47:1
mri8I02 8 71.49 0.0142 73.34 0.0118 21.40:1 10.73:1 7.15:1
mri8I03 8 70.33 0.0144 71.99 0.0122 21.02:1 10.49:1 7.00:1
mri8I04 8 71.27 0.0129 73.04 0.0108 21.13:1 12.08:1 7.69:1
mri8I05 8 70.89 0.0127 72.66 0.0107 21.02:1 11.42:1 7.40:1
mri8I06 8 70.12 0.0169 72.00 0.0140 21.63:1 11.43:1 7.48:1
mri8I07 8 68.49 0.0200 70.53 0.0163 21.24:1 11.20:1 7.33:1
mri8I08 8 66.47 0.0269 68.46 0.0221 21.86:1 10.51:1 7.10:1
mri8I09 8 68.22 0.0193 70.15 0.0159 21.63:1 10.85:1 7.23:1
mri8I10 8 68.64 0.0154 70.47 0.0128 21.35:1 11.16:1 7.33:1
mri8I11 8 69.94 0.0119 71.68 0.0100 21.24:1 10.84:1 7.18:1
mri8I12 8 68.53 0.0122 70.38 0.0101 20.39:1 10.32:1 6.85:1
mri8I13 8 68.50 0.0120 70.97 0.0094 19.90:1 10.38:1 6.82:1
mri8I14 8 67.86 0.0144 70.56 0.0110 20.19:1 9.54:1 6.48:1
mri8I15 8 68.57 0.0152 71.48 0.0114 20.09:1 9.44:1 6.42:1
mri8I16 8 67.82 0.0159 70.85 0.0118 19.80:1 8.95:1 6.17:1
mri8I17 8 68.66 0.0166 71.74 0.0122 19.90:1 9.18:1 6.28:1
mri8I18 8 67.07 0.0194 69.72 0.0149 19.70:1 9.12:1 6.23:1
mri8I19 8 67.08 0.0211 69.67 0.0163 19.70:1 8.82:1 6.09:1
mri8I20 8 67.10 0.0235 69.43 0.0186 19.85:1 9.72:1 6.52:1
mri8I21 8 68.20 0.0240 70.49 0.0191 21.29:1 11.82:1 7.60:1
mri8I22 8 67.83 0.0262 69.90 0.0213 22.22:1 11.48:1 7.57:1
mri8I23 8 67.69 0.0294 69.82 0.0237 23.09:1 11.41:1 7.63:1

Avg. 68.82 0.0183 71.02 0.0147 20.90:1 10.42:1 6.95:1

#QBits: Number of Quantization Bits for compressed patterns,
NE: Non-Edge, E+NE: Edge + Non-Edge (combined), PSNR: Peak Signal to Noise Ratio,

AMSE: Average Mean Squared Error, NE-CR: Non-Edge Compression Ratio (C.R.),
E-CR: Edge C.R., CCR: Combined (Edge+NonEdge images) C.R.

Table 7.4: Results of image compression using EPIC for Expt. CTEST4
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EPIC Compression Expt. CTEST4_A
Image #QBits NE-

PSNR
NE-

AMSE
E+NE-
PSNR

E+NE-
AMSE

NE-CR E-CR CCR

mri8I00 8 70.46 0.0269 72.64 0.0217 23.87:1 9.86:1 6.98:1
mri8I01 8 70.46 0.0181 72.49 0.0148 23.63:1 9.39:1 6.72:1
mri8I02 8 71.49 0.0142 73.35 0.0118 24.51:1 10.73:1 7.46:1
mri8I03 8 70.33 0.0144 71.99 0.0122 24.01:1 10.49:1 7.30:1
mri8I04 8 71.27 0.0129 73.04 0.0109 24.25:1 12.08:1 8.06:1
mri8I05 8 70.89 0.0127 72.66 0.0107 24.33:1 11.42:1 7.77:1
mri8I06 8 70.12 0.0169 72.01 0.0140 25.54:1 11.43:1 7.89:1
mri8I07 8 68.50 0.0200 70.54 0.0163 25.42:1 11.20:1 7.77:1
mri8I08 8 66.48 0.0269 68.47 0.0221 26.62:1 10.51:1 7.54:1
mri8I09 8 68.23 0.0193 70.16 0.0159 26.15:1 10.85:1 7.67:1
mri8I10 8 68.65 0.0154 70.48 0.0128 25.62:1 11.16:1 7.77:1
mri8I11 8 69.95 0.0119 71.69 0.0100 25.07:1 10.84:1 7.57:1
mri8I12 8 68.53 0.0122 70.38 0.0101 23.63:1 10.32:1 7.18:1
mri8I13 8 68.51 0.0120 70.98 0.0094 22.83:1 10.38:1 7.14:1
mri8I14 8 67.87 0.0144 70.58 0.0110 22.93:1 9.54:1 6.74:1
mri8I15 8 68.58 0.0152 71.49 0.0114 22.58:1 9.44:1 6.66:1
mri8I16 8 67.82 0.0159 70.85 0.0118 22.13:1 8.95:1 6.37:1
mri8I17 8 68.66 0.0166 71.74 0.0122 22.28:1 9.18:1 6.50:1
mri8I18 8 67.07 0.0194 69.72 0.0149 21.89:1 9.12:1 6.44:1
mri8I19 8 67.08 0.0211 69.68 0.0163 21.77:1 8.82:1 6.27:1
mri8I20 8 67.11 0.0234 69.44 0.0186 21.83:1 9.72:1 6.72:1
mri8I21 8 68.20 0.0240 70.49 0.0191 23.52:1 11.82:1 7.87:1
mri8I22 8 67.84 0.0262 69.90 0.0213 24.62:1 11.48:1 7.83:1
mri8I23 8 67.70 0.0293 69.84 0.0237 26.11:1 11.41:1 7.94:1

Avg. 68.83 0.0183 71.02 0.0147 23.96:1 10.42:1 7.26:1

#QBits: Number of Quantization Bits for compressed patterns,
NE: Non-Edge, E+NE: Edge + Non-Edge (combined), PSNR: Peak Signal to Noise Ratio,

AMSE: Average Mean Squared Error, NE-CR: Non-Edge Compression Ratio (C.R.),
E-CR: Edge C.R., CCR: Combined (Edge+NonEdge images) C.R.

Table 7.5: Results of image compression using EPIC for Expt. CTEST4_A

The same set of images were compressed using JPEG at compression ratios that were

comparable to that achieved using EPIC. An image quality factor (QFactor) of 25 using

JPEG provided a comparable average Compression Ratio to Expt. CTEST4 of 20.61:1,

with an average AMSE of 0.0062, while a QFactor of 17 provided comparable average

Compression Ratios to Expt. CTEST4_A. It was observed that as the compression ratios

were increased (through lowering QFactor), the average AMSE also increased quite

rapidly. This contrasts with the performance of EPIC, where the AMSE held constant as

the compression ratio was increased. The results for JPEG for the case of QFactor = 25

and QFactor = 17 are presented in Table 7.6:
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JPEG Compression Results ( comparable compression ratios)
Image QFactor PSNR AMSE CR QFactor PSNR AMSE CR

mri8I00 25 78.69 0.0118 20.21:1 17 75.56 0.0162 24.40:1
mri8I01 25 78.83 0.0078 19.56:1 17 75.57 0.0109 23.68:1
mri8I02 25 80.00 0.0061 19.95:1 17 76.64 0.0085 23.98:1
mri8I03 25 79.68 0.0056 19.63:1 17 76.37 0.0078 23.46:1
mri8I04 25 79.81 0.0055 19.89:1 17 76.64 0.0076 23.71:1
mri8I05 25 79.81 0.0052 20.20:1 17 76.53 0.0072 24.28:1
mri8I06 25 79.72 0.0065 20.91:1 17 76.36 0.0091 25.06:1
mri8I07 25 79.23 0.0068 20.73:1 17 76.03 0.0094 24.73:1
mri8I08 25 78.62 0.0080 20.73:1 17 75.43 0.0110 24.42:1
mri8I09 25 78.75 0.0067 20.94:1 17 75.63 0.0092 24.90:1
mri8I10 25 79.52 0.0052 21.01:1 17 76.37 0.0071 25.15:1
mri8I11 25 80.12 0.0043 21.28:1 17 76.90 0.0059 25.44:1
mri8I12 25 79.31 0.0041 20.16:1 17 76.12 0.0057 24.30:1
mri8I13 25 78.50 0.0044 19.73:1 17 75.32 0.0061 24.17:1
mri8I14 25 78.33 0.0051 19.90:1 17 75.21 0.0069 24.43:1
mri8I15 25 78.76 0.0055 20.77:1 17 75.79 0.0074 25.36:1
mri8I16 25 78.34 0.0056 20.18:1 17 75.39 0.0075 24.55:1
mri8I17 25 79.07 0.0059 20.55:1 17 75.99 0.0080 25.16:1
mri8I18 25 78.80 0.0060 19.78:1 17 75.76 0.0082 24.11:1
mri8I19 25 79.47 0.0061 20.43:1 17 76.44 0.0083 24.80:1
mri8I20 25 79.88 0.0065 20.21:1 17 76.73 0.0090 24.53:1
mri8I21 25 80.94 0.0067 21.75:1 17 77.74 0.0092 26.40:1
mri8I22 25 81.14 0.0069 22.41:1 17 77.98 0.0095 27.71:1
mri8I23 25 82.00 0.0070 23.77:1 17 78.73 0.0097 28.46:1

Avg. 79.47 0.0062 20.61:1 76.30 0.0086 24.88:1

QFactor: JPEG Quality Factor, PSNR: Peak Signal to Noise Ratio,
AMSE: Average Mean Squared Error, CR: Compression Ratio

Table 7.6: Results of image compression using JPEG with QFactor = 25 and 17

However, for error rates that were comparable to that achieved by EPIC, which

corresponded to an average compression ratio of 32.15:1 and an average AMSE of 0.0132

using a QFactor of 10, the recovered JPEG images were much more distorted and

“blocky” , and some features could not be distinguished. In contrast, recovered EPIC

images indicated much better subjective image quality. The JPEG results for QFactor =

10 are presented in Table 7.7:
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JPEG Compression Results (comparable error rates)
Image QFactor PSNR AMSE CR

mri8I00 10 71.46 0.0244 32.08:1
mri8I01 10 71.29 0.0167 30.55:1
mri8I02 10 72.29 0.0131 30.93:1
mri8I03 10 71.99 0.0122 30.83:1
mri8I04 10 72.19 0.0118 30.83:1
mri8I05 10 72.22 0.0112 31.00:1
mri8I06 10 72.00 0.0140 31.80:1
mri8I07 10 71.49 0.0148 30.94:1
mri8I08 10 70.91 0.0173 30.62:1
mri8I09 10 71.10 0.0145 31.66:1
mri8I10 10 71.70 0.0113 32.27:1
mri8I11 10 72.63 0.0091 32.75:1
mri8I12 10 71.74 0.0088 31.61:1
mri8I13 10 71.10 0.0093 31.74:1
mri8I14 10 71.06 0.0105 31.80:1
mri8I15 10 71.70 0.0112 32.93:1
mri8I16 10 71.21 0.0114 32.09:1
mri8I17 10 71.80 0.0122 33.15:1
mri8I18 10 71.55 0.0124 31.89:1
mri8I19 10 71.93 0.0130 32.90:1
mri8I20 10 72.07 0.0143 32.08:1
mri8I21 10 73.30 0.0144 34.01:1
mri8I22 10 73.53 0.0148 34.77:1
mri8I23 10 74.06 0.0155 36.31:1

Avg. 71.93 0.0132 32.15:1

QFactor: JPEG Quality Factor, PSNR: Peak Signal to Noise Ratio,
AMSE: Average Mean Squared Error, CR: Compression Ratio

Table 7.7: Results of image compression using JPEG with QFactor = 10

7.3. Discuss ion o f Results

Although the quantitative results from JPEG had better AMSE values at QFactor = 10,

the subjective image quality of the recovered JPEG image was much worse than those

obtained from EPIC which had comparable AMSE values. This was due to the fact that

the neural network compressor distributed the errors much more evenly throughout the

entire image. In addition, since JPEG is an algorithmic image compression scheme, there

is no way to prevent the rapid deterioration in the quality of JPEG images at compression

rates above 20:1, making JPEG impractical for applications requiring very high

compression ratios. However, EPIC would be able to provide a means of achieving such

high compression ratios with littl e or no deterioration in the subjective image quality

through suff iciently trained networks.
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The DANN neural network training scheme has very slow convergence properties.

Consequently, the results detailed in the previous sections reflect the fact that some of the

networks have not converged suff iciently to the desired error rates. Although the

improvements proposed for EPIC helped circumvent some of its most obvious

weaknesses, more work still remains to be done to improve the training and convergence

characteristics. Some improvements suggested in [3] might help improve the convergence

properties of the EPIC neural network compressors, thus enabling EPIC to achieve better

error rates compared to JPEG while achieving much higher compression ratios. Another

means of achieving better error rates is through the removal of edges from the image to

be compressed by the EPIC neural network compressors. This edge-removed image

would have less variabilit y compared to the original image, thus making it easier for the

neural network to process and compress the image, since neural network-based

compression techniques tend to have low-pass properties and smooth out edge

information.

Furthermore, the edge detection and preservation step incurs a rather substantial penalty

in terms of the overall achievable compression ratios. Nonetheless, it is an important

component of the compression scheme for meeting the criteria of a suitable compression

system for MR images, as well as improve the overall image quality. As stated

previously, edge information is also vital for 3D volume visualization and multiple

modality image registration applications.

Examples of the recovered images for EPIC (Expt. CTEST4_A) and JPEG (QFactor =

10) are given below, in Figures 7.1 to 7.3:
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Figure 7.1: (left) Original, (middle) EPIC Expt. CTEST4_A, and (right) JPEG (Q=10)

Recovered Images for MRI8I02

1RW�$YDLODEOH�LQ�6RIWFRS\�)RUPDW

Figure 7.2: (left) Original, (middle) EPIC Expt. CTEST4_A, and (right) JPEG (Q=10)

Recovered Images for MRI8I11

1RW�$YDLODEOH�LQ�6RIWFRS\�)RUPDW

Figure 7.3: (left) Original, (middle) EPIC Expt. CTEST4_A, and (right) JPEG (Q=10)

Recovered Images for MRI8I17
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Chapter 8. Summary

8.1. Advantages of the EPIC Compress ion Scheme

(i) Edge preservation: Since the edges in the image are coded using a lossless scheme,

it does not suffer from the drawback of conventional JPEG, which tends to lose

high frequency components (edges) during compression.

(ii ) Feature determination: A major advantage of the edge extraction step is that it

provides the first step towards the extraction of features from the image for use in

further image processing. This utili zation of an essential step in image processing in

the compression process helps eliminate redundant processing later on.

(iii ) High compression ratio for non-edge images: the separation of edge information

from the rest of the image affords the use of lossy compression schemes that

achieve high compression ratios. In addition, the use of neural networks for

performing this step enables us to tailor the compression architecture for specific

types of images.

(iv) Progressive Transmission: Since neural network compressors are able to generalize

and compensate for noisy inputs, it is therefore possible to provide progressive

transmission of images by transmitting the most significant bits of the compressed

vectors first. This is effectively similar to performing quantization on the

transmitted vectors, where the received compressed vector is improved successively

using more significant bits, increasing the number of quantization levels and

converging to the final image.

(v) Temporal adaptabilit y: Neural network based compressors are by definition

adaptive. In addition, they can be configured to adapt to changes over time in the

input data stream by the use of shadow neural network compressors which continue

to learn from patterns extracted from the input stream. If the error rates of the on-
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line network exceed a given threshold, the shadow compressors can replace the

existing network easily, thus achieving temporal adaptabilit y.

8.2. Future Enhancements

Further improvements to the DANN training algorithms are still needed, to improve its

speed of convergence and convergence abilit y beyond that achieved through the

techniques proposed in EPIC. This is necessary due to the non-linear nature of the neural

network training process, as well as the high degrees of freedom present in parameter

selection. Edge removal prior to neural network compression would also help reduce the

variabilit y in the image and help convergence.

In order for the compression architecture to perform optimally, continuous monitoring of

the compression process should be maintained. This is accomplished by using a similar

bank of neural compressors in parallel with the actual compressor (called the shadow

compressor), and if the error exceeds a predefined threshold, the shadow compressor

network will be retrained in order to return the system to its operational goals. Once the

training is completed, the updated weights of the neural networks will be transferred to

the operational compressor network.

Variable sized image blocks can also be used to reduce “blocking” effects, while large

image blocks can be used to provide even higher compression ratios for the uniform dark

regions surrounding the MR images.
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Appendix

A.1. Dynamic Autoassociative Neural Networks — Architecture & Training

The classic multil ayer feed forward network architecture for data compression proposed

by Cottrel, Munro, and Zipser [23] comprises of a three layer network, with N neurons

each in the input and output layers forming an autoassociative mapping, and M neurons

in the hidden layer (M < N) to represent the compressed version of the data. The output

values from the hidden layer neurons are used to reconstruct the data set. It has been

shown by Baum [34] and Widrow [35] that the capacity or learning abilit y of a network is

dependent on the number of weight connections. With a three layer network, a fixed

compression ratio dictates the capacity of the network for storing and reconstructing

different input patterns, and vice-versa. This severely limits the usefulness of neural

network based data compression systems. In order to achieve very high compression

ratios while adapting to different data characteristics, four layer feedforward neural

networks are therefore used to provide the necessary learning capacity and adaptabilit y.

In order to correctly learn complex datasets, the number of neurons in the first hidden

layer is variable and can be tailored to the complexity of the data, whereas the second

hidden layer provides the desired compression ratio. This is ill ustrated in Figure A.1.
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Dynamic Autoassociative Neural Network (DANN) Architecture

Figure A.1: DANN Architecture

However, the use of four layer networks pose other problems. It was reported in [36] that

although three and four layer networks with similar number of weights give statistically

identical results (i.e., they are equivalent), four layer networks with uneven numbers of

weights in the two hidden layers (unbalanced networks) are diff icult to train and often

result in the error function being trapped in a local minima. In addition, the need to

correctly learn datasets of arbitrary complexity results in costly architectural modification

and retraining on a trial and error basis using conventional statically defined network

architectures. In order to address the diff iculty of learning for unbalanced networks, the

descending epsilon technique proposed by Yu and Simmons [27] is used during training.

The error present at each output neuron obtained during training is compared to a

threshold epsion (ε), and if it is less than ε, the error is ignored. Otherwise, that error is

backpropagated as usual to the hidden layer neurons. Once all the training patterns pass a

given ε, it is lowered and training continues until a final ε is reached. A very similar

approach to descending epsilon has been used successfully for reduced precision neural
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networks in [37], where it is called the Weighted Error Function. The use of the

descending epsilon technique also constrains the errors into a more well defined range, so

that individual pattern errors are well constrained, in addition to the average error for the

network across all patterns.

To provide for adaptation to arbitrary datasets during training, and to avoid the expense

of a trial and error approach to network architecture determination, dynamic neural

network architectures have been proposed [38], and more recently [39], used dynamic

network architectures to allow the system to escape local minima and provide necessary

learning support. [39] further indicates that better convergence properties are observed

when nodes are added to the first hidden layer compared to the second hidden layer. This

is due to the fact that the second hidden layer acts as a “filter” to buffer the changes in the

network architecture due to the addition of new neurons. Since the requirements of the

data compression problem dictate that network modifications can occur only in the first

hidden layer, the results presented in [39] further validate this approach. These techniques

have been used to create the DANN compression system [2]. It combines the dynamic

architecture approach with the use of the descending epsilon technique during training to

achieve low errors with high compression ratios.

During the training phase for the neural networks, training images are first segmented

into smaller subimages and converted into training patterns. Training sets are tailored to

the specific type of images and image modality in order to achieve optimal performance

for a given modality. The Mean Squared Error (MSE) of the neural networks output is

used to quantify the performance of the training process. However, it must be noted that

MSE alone is not suff icient for determining whether the network is converging to the

desired visual output. A subjective criteria based on the visual fidelity of the image is

desirable in order to provide a more balanced approach to training the neural networks.
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A.2. Backpropagation Fo rmulae

The formulae used for the four-layered feedforward perceptron network, as adapted from

the formulae given in [40] are:

Input layer, given p-th input vector, layer size N:

��xp = xp1 ,xp2 ,�,xpN( )t

First hidden layer input for j-th neuron with bias unit, layer size Nh1:

netpj
h1 = wji

h1
xpi

i=1

N

∑ + θ j
h1

First hidden layer output for j-th neuron:

ipj
h1 = f j

h1
netpj

h1( )

Second hidden layer input for k-th neuron with bias unit, layer size Nh2:

netpk
h 2 = wkj

h2ipj
h1

j =1

N h1

∑ + θk
h2

Second hidden layer output for k-th neuron:

ipk
h2 = f k

h2
netpk

h2( )

Output layer input for l-th neuron, layer size N:

netpl
o = wlk

o
ipk
h2

k=1

Nh2

∑ + θ l
o

Output layer output for l-th neuron:

opl = f l
o netpl

o( )

Sigmoidal function of the outputs from each neuron and its derivative:

f y
x netpy

x( )= 1+ e
−netpy

x 
 
  

 
 

−1

f y
x '

netpy
x( )= f y

x netpy
x( )1− f y

x netpy
x( )[ ]
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Error terms for the output units:

δ pl
o = ypl − opl( )f l

o' netpl
o( )

Error terms for the second hidden layer units:

δ pk
h2 = f k

h2'
netpk

h2( ) δpl
o wlk

o

l =1

N

∑

Error terms for the first hidden layer units:

δ pj
h1 = f j

h1'
netpj

h1( ) δpk
h2wkj

h2

k =1

N h2

∑

Weight updates for the output layer:

wlk
o

(t +1) = wlk
o

(t ) + ηδ pl
o

ipk
h2 + α∆pwlk

o
(t − 1)

Weight updates for the second hidden layer:

wkj
h2

(t +1) = wkj
h2

(t ) + ηδpk
h2

ipj
h1 + α∆pwkj

h2
(t −1)

Weight updates for the first hidden layer:

w ji
h1 (t + 1) = w ji

h1(t) + ηδpj
h1xpi + α∆ pwji

h1(t − 1)

The error term for pattern p:

Ep = 1
2 δ pl

o 2

l =1

N

∑
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